cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A274406 Numbers m such that 9 divides m*(m + 1).

Original entry on oeis.org

0, 8, 9, 17, 18, 26, 27, 35, 36, 44, 45, 53, 54, 62, 63, 71, 72, 80, 81, 89, 90, 98, 99, 107, 108, 116, 117, 125, 126, 134, 135, 143, 144, 152, 153, 161, 162, 170, 171, 179, 180, 188, 189, 197, 198, 206, 207, 215, 216, 224, 225, 233, 234, 242, 243, 251, 252, 260, 261, 269
Offset: 1

Views

Author

Bruno Berselli, Jun 20 2016

Keywords

Comments

Equivalently, numbers congruent to 0 or 8 mod 9.
Terms of A007494 with indices in A047264. Also, terms of A060464 with indices in A047335.

Crossrefs

Cf. A008591 (first bisection), A010689 (first differences), A017257 (second bisection).
Cf. similar sequences in which m*(m+1) is divisible by k: A014601 (k=4), A047208 (k=5), A007494 (k=3 and 6), A047335 (k=7), A047521 (k=8), this sequence (k=9).
Cf. A301451: numbers congruent to {1, 7} mod 9; A193910: numbers congruent to {2, 6} mod 9.

Programs

  • Magma
    [n: n in [0..300] | IsDivisibleBy(n*(n+1),9)];
  • Mathematica
    Select[Range[0, 300], Divisible[# (# + 1), 9] &]
  • PARI
    for(n=0, 300, if(n*(n+1)%9==0, print1(n", ")))
    
  • Sage
    [n for n in range(300) if 9.divides(n*(n+1))]
    

Formula

G.f.: x^2*(8 + x)/((1 + x)*(1 - x)^2).
a(n) = (18*n + 7*(-1)^n - 11)/4. Therefore: a(2*m) = 9*m-1, a(2*m+1) = 9*m. It follows that a(j)+a(k) and a(j)*a(k) belong to the sequence if j and k are not both even.
a(n) = -A090570(-n+2).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(2*r+1) + a(2*r+s+1) = a(4*r+s+1) and a(2*r) + a(2*r+2*s+1) = a(4*r+2*s). A particular case provided by these identities: a(n) = a(n - 2*floor(n/6)) + a(2*floor(n/6) + 1).
E.g.f.: 1 + ((9*x - 2)*cosh(x) + 9*(x - 1)*sinh(x))/2. - Stefano Spezia, Apr 24 2021

A301451 Numbers congruent to {1, 7} mod 9.

Original entry on oeis.org

1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1

Views

Author

Bruno Berselli, Mar 21 2018

Keywords

Comments

First bisection of A056991, second bisection of A242660.
The squares of the terms of A174396 are the squares of this sequence.

Crossrefs

Cf. A274406: numbers congruent to {0, 8} mod 9.
Cf. A193910: numbers congruent to {2, 6} mod 9.

Programs

  • GAP
    a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
    
  • Magma
    &cat [[9*n+1, 9*n+7]: n in [0..40]];
    
  • Mathematica
    Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}]
    {#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
  • Python
    [2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
    
  • Sage
    [n for n in (1..300) if n % 9 in (1,7)]
    

Formula

O.g.f.: x*(1 + 6*x + 2*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (3 + 8*exp(x) - 11*exp(2*x) + 18*x*exp(2*x))*exp(-x)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 2*(2*n - 1) + (2*n - 3*(1 - (-1)^n))/4. Therefore, for n even a(n) = (9*n - 4)/2, otherwise a(n) = (9*n - 7)/2.
a(2n+1) = A017173(n). a(2n) = A017245(n-1). - R. J. Mathar, Feb 28 2019

A219795 Sum of the absolute values of the antidiagonals of the triangle A135929(n) companion. See the comment.

Original entry on oeis.org

2, 2, 2, 2, 3, 3, 5, 7, 10, 11, 16, 23, 33, 44, 58, 81, 114, 158, 212, 293, 407, 565, 777, 1064, 1471, 2036, 2813, 3863, 5334, 7370, 10183, 14046, 19356, 26726, 36909, 50955, 70251, 96977, 133886, 184841, 255092
Offset: 0

Views

Author

Paul Curtz, Nov 28 2012

Keywords

Comments

The companion to A135929(n) is the triangle
2;
2, 0;
2, 0, 1;
2, 0, -1, 0;
2, 0, -3, 0, -1;
2, 0, -5, 0, 0, 0;
2, 0, -7, 0, 3, 0, 1;
2, 0, -9, 0, 8, 0, 1, 0;
(A192011(n) beginning with 2 instead of -1).
Consider a(1),a(5),a(10),a(14), that is, a(A193910(n) -1).
a(1)+a(4)-a(5) = 2, a(5)+a(8)-a(9) = 2, a(10)+a(13)-a(14) = 2, a(14)+a(17)-a(18) = 4, a(19)+a(22)-a(23) = 6, a(23)+a(26)-a(27) = 14, yields 2,2,2,4,6,14,24,60,... = 2*A047749(n) or 2, followed with A116637(n+1).

Examples

			a(0)=2, a(1)=2, a(2)=2+0, a(3)=2+0, a(4)=2+0+1, a(5)=2+0+1.
		

Programs

  • Maple
    A219795 := proc(n)
        if n=0 then
            2;
        else
            add(abs(A192011(n-k,k)),k=0..floor(n/2)) ;
        end if;
    end proc: # R. J. Mathar, Jan 06 2013

Formula

a(n) = sum abs ( [k=0..floor(n/2)] A192011(n-k,k) ), a(0)=2.

Extensions

a(24)-a(40) from Jean-Francois Alcover, Nov 28 2012

A193879 Different leap years in the Gregorian and the revised Julian calendars.

Original entry on oeis.org

0, 2, 4, 6, 8, 11, 12, 15, 16, 28, 29, 32, 33, 36, 38, 40, 42, 44, 47, 48, 51, 52, 64, 65, 68, 69, 72, 74, 76, 78, 80, 83, 84, 87, 88, 100, 101, 104, 105, 108, 110, 112, 114, 116, 119, 120, 123, 124, 136, 137, 140, 141, 144, 146, 148, 150, 152, 155, 156, 159, 160
Offset: 1

Views

Author

Frank Ellermann, Aug 07 2011

Keywords

Comments

Terms divided by 100, e.g., 28 indicates year 2800, which is a Gregorian leap year, but not a revised Julian leap year. Values below 28 are "proleptic" (only based on the formula).

Examples

			28 mod 9 is not 2 or 6, but 28 mod 4 is 0: 2800 is a Gregorian leap year.
29 mod 9 is 2, but 29 mod 4 is not 0: 2900 is a revised Julian leap year.
		

Crossrefs

A008586 enumerates "Gregorian leap centuries" (N // 4 = 0).
A193910 enumerates "revised Julian leap centuries".

Formula

( N // 9 = 2 | N // 9 = 6 ) <> ( N // 4 = 0 )

A144652 Triangle, read by rows, where T(m,n) = floor((2mn+m+n)/2) with m >= n >= 1.

Original entry on oeis.org

2, 3, 6, 5, 8, 12, 6, 11, 15, 20, 8, 13, 19, 24, 30, 9, 16, 22, 29, 35, 42, 11, 18, 26, 33, 41, 48, 56, 12, 21, 29, 38, 46, 55, 63, 72, 14, 23, 33, 42, 52, 61, 71, 80, 90, 15, 26, 36, 47, 57, 68, 78, 89, 99, 110, 17, 28, 40, 51, 63, 74, 86, 97, 109, 120, 132, 18, 31, 43, 56, 68
Offset: 1

Views

Author

Vincenzo Librandi, Jan 27 2009

Keywords

Comments

From Vincenzo Librandi, Nov 16 2012: (Start)
First column: A007494(n+1);
second column: A047219(n+2);
third column: A047383(n+3);
fourth column: A193910(n+4).
Conjecture: If h does not belong to the sequence, then 4*h+1 is prime. (End)

Examples

			Triangle begins:
2;
3,  6;
5,  8,  12;
6,  11, 15, 20;
8,  13, 19, 24, 30;
9,  16, 22, 29, 35, 42;
11, 18, 26, 33, 41, 48, 56; etc.
		

Crossrefs

Programs

  • Magma
    [Floor((2*n*k+n+k)/2): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 16 2012
  • Mathematica
    Flatten[Table[Floor[(2*n*m + m + n)/2], {n, 1, 20}, {m, n}]] (* Vincenzo Librandi, Nov 16 2012 *)

Extensions

Definition edited (specifying m >= n >= 1), and terms recomputed to match definition, as was done with the similar sequence A140869, by Jon E. Schoenfield, Jun 24 2010

A215414 Unix epoch timestamp for start of year, beginning with 1970.

Original entry on oeis.org

0, 31536000, 63072000, 94694400, 126230400, 157766400, 189302400, 220924800, 252460800, 283996800, 315532800, 347155200, 378691200, 410227200, 441763200, 473385600, 504921600, 536457600, 567993600, 599616000, 631152000, 662688000, 694224000, 725846400, 757382400
Offset: 1

Views

Author

Kyle Stern, Aug 09 2012

Keywords

Comments

This is based on a naive multiplication of A033172 with a fixed number of seconds per year, 24*3600 = 86400. It ignores that leap years are not regularly occurring after 4 years (but after 400 years, note the formula that relates a(n+4) to a(n) and also the simple Mma implementation), ignores leap seconds, and any other influences that align the slowing down of the Earth rotation in an astronomical fixed coordinate system measured relative to atomic clocks. In summary, the use of "year" in the definition is not commensurate with years in standard astronomical or earth observational terms. - R. J. Mathar, Aug 21 2012

Crossrefs

Programs

  • Mathematica
    lst = {}; t = 86400; Do[e = t*(365*(n - 1) + Ceiling[n/4]); If[! Mod[n, 4] == 0, e = e - t]; AppendTo[lst, e], {n, 25}]; lst (* Arkadiusz Wesolowski, Aug 20 2012 *)
    CoefficientList[Series[86400*(365*x + 365*x^2 + 366*x^3 + 365*x^4)/((x - 1)^2*(1 +x +x^2 +x^3)), {x,0,50}], x] (* G. C. Greubel, Feb 26 2017 *)
  • PARI
    x='x+O('x^50); Vec(86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3))) \\ G. C. Greubel, Feb 26 2017

Formula

From Alexander R. Povolotsky, Aug 20 2012: (Start)
a(n) = 10800*(2922*n + (-1)^n + (1+i)*(-i)^n + (1-i)*i^n - 2923).
a(n+4) = a(n) + 126230400.
G.f.: 86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3)). (End)

Extensions

a(11)-a(25) from Arkadiusz Wesolowski, Aug 20 2012
Showing 1-6 of 6 results.