cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A325862 Number of integer partitions of n such that every set of distinct parts has a different sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 46, 58, 77, 93, 122, 146, 188, 217, 282, 327, 410, 470, 596, 673, 848, 947, 1178, 1325, 1629, 1798, 2213, 2444, 2962, 3247, 3935, 4292, 5149, 5579, 6674, 7247, 8590, 9221, 10964, 11804, 13870, 14843, 17480, 18675, 21866
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

A knapsack partition (A108917, A299702) is an integer partition such that every submultiset has a different sum. The one non-knapsack partition counted under a(4) is (2,1,1).

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (411)     (331)
                            (11111)  (2211)    (421)
                                     (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The three non-knapsack partitions counted under a(6) are:
  (2,2,1,1)
  (3,1,1,1)
  (2,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#]]&]],{n,0,20}]

A196724 Number of subsets of {1..n} (including empty set) such that the pairwise products of distinct elements are all distinct.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 58, 116, 212, 416, 720, 1440, 2340, 4680, 7920, 13024, 23328, 46656, 74168, 148336, 229856, 371424, 615304, 1230608, 1780224, 3401568, 5589360, 9468504, 14397744, 28795488, 40312128, 80624256, 131388480, 206363168, 335814288, 521401536
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2011

Keywords

Comments

The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product is A325860(n). - Gus Wiseman, Jun 03 2019

Examples

			a(6) = 58: from the 2^6=64 subsets of {1,2,3,4,5,6} only 6 do not have all the pairwise products of elements distinct: {1,2,3,6}, {2,3,4,6}, {1,2,3,4,6}, {1,2,3,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}.
		

Crossrefs

The subset case is A196724 (this sequence).
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Maple
    b:= proc(n, s) local sn, m;
          m:= nops(s);
          sn:= [s[], n];
          `if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq(
           sn[i]*sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
        end:
    a:= proc(n) option remember;
          b(n-1, [n]) +`if`(n=0, 0, a(n-1))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] * sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]]; a[n_] := a[n] = b[n - 1, {n}] + If[n == 0, 0, a[n - 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2017, translated from Maple *)
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Times@@@Subsets[#,{2}]&]],{n,0,10}] (* Gus Wiseman, Jun 03 2019 *)

Extensions

Name edited by Gus Wiseman, Jun 03 2019
a(33)-a(35) from Fausto A. C. Cariboni, Oct 05 2020

A325860 Number of subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 2, 4, 8, 14, 28, 52, 104, 188, 308, 548, 1096, 1784, 3568, 6168, 10404, 16200, 32400, 49968, 99936, 155584, 256944, 433736, 867472, 1297504, 2026288, 3387216, 5692056, 8682912, 17365824, 25243200, 50486400, 78433056, 125191968, 206649216, 328195632
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}    {}     {}
      {1}  {1}   {1}    {1}
           {2}   {2}    {2}
           {12}  {3}    {3}
                 {12}   {4}
                 {13}   {12}
                 {23}   {13}
                 {123}  {14}
                        {23}
                        {24}
                        {34}
                        {123}
                        {134}
                        {234}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,0,20}]

Extensions

a(21)-a(25) from Alois P. Heinz, Jun 07 2019
a(26)-a(35) from Fausto A. C. Cariboni, Oct 04 2020

A325864 Number of subsets of {1..n} of which every subset has a different sum.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 56, 91, 135, 211, 307, 446, 625, 882, 1194, 1677, 2238, 3031, 4001, 5460, 6995, 9302, 11921, 15424, 19554, 25032, 31005, 39170, 48251, 59917, 73093, 90831, 109271, 134049, 160922, 196109, 234179, 284157, 335933, 408390, 482597, 575109
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Examples

			The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[#]&]],{n,0,10}]

Extensions

a(18)-a(42) from Alois P. Heinz, Jun 03 2019

A325877 Number of strict integer partitions of n such that every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 18, 19, 26, 28, 36, 37, 50, 52, 67, 68, 89, 94, 115, 121, 151, 160, 195, 200, 247, 265, 312, 329, 386, 418, 487, 519, 600, 640, 742, 792, 901, 978, 1088, 1185, 1331, 1453, 1605, 1729, 1925, 2101, 2311, 2524, 2741, 3000
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The non-strict case is A325857.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)   (64)
                        (41)  (51)   (52)   (62)   (63)   (73)
                              (321)  (61)   (71)   (72)   (82)
                                     (421)  (431)  (81)   (91)
                                            (521)  (432)  (532)
                                                   (531)  (541)
                                                   (621)  (631)
                                                          (721)
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325878 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different sum.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 8, 22, 40, 56, 78, 124, 222, 390, 616, 892, 1220, 1620, 2182, 3042, 4392, 6364, 9054, 12608, 16980, 22244, 28482, 36208, 45864, 58692, 75804, 98440, 128694, 168250, 218558, 281210, 357594, 449402, 560034, 693332, 853546, 1050118, 1293458, 1596144, 1975394
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 8 subsets:
  {1}  {1,2}  {1,2,3}  {1,2,3}  {1,2,4}    {1,2,3,5}
                       {1,2,4}  {2,3,4}    {1,2,3,6}
                       {1,3,4}  {2,4,5}    {1,2,4,6}
                       {2,3,4}  {1,2,3,5}  {1,3,4,5}
                                {1,3,4,5}  {1,3,5,6}
                                           {1,4,5,6}
                                           {2,3,4,6}
                                           {2,4,5,6}
		

Crossrefs

The subset case is A196723.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
       my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,b< n, ismaxl(b,w),
             my(s=self()(k+1, r, b, w));
             if(!bitand(w,b<Andrew Howroyd, Mar 23 2025

Extensions

a(21) onwards from Andrew Howroyd, Mar 23 2025

A325879 Number of maximal subsets of {1..n} such that every ordered pair of distinct elements has a different difference.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 14, 20, 24, 36, 64, 110, 176, 238, 294, 370, 504, 736, 1086, 1592, 2240, 2982, 3788, 4700, 5814, 7322, 9396, 12336, 16552, 22192, 29310, 38046, 48368, 60078, 73722, 89416, 108208, 131310, 160624, 198002, 247408, 310410, 390924, 490818, 613344, 758518
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

Also the number of maximal subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum.

Examples

			The a(0) = 1 through a(7) = 20 subsets:
  {}  {1}  {1,2}  {1,2}  {2,3}    {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,2,4}  {1,2,5}  {1,2,5}  {1,2,6}
                  {2,3}  {1,3,4}  {1,3,4}  {1,2,6}  {1,3,4}
                                  {1,4,5}  {1,3,4}  {1,4,5}
                                  {2,3,5}  {1,3,6}  {1,4,6}
                                  {2,4,5}  {1,4,5}  {1,5,6}
                                           {1,4,6}  {2,3,5}
                                           {1,5,6}  {2,3,6}
                                           {2,3,5}  {2,3,7}
                                           {2,3,6}  {2,4,5}
                                           {2,4,5}  {2,4,7}
                                           {2,5,6}  {2,5,6}
                                           {3,4,6}  {2,6,7}
                                           {3,5,6}  {3,4,6}
                                                    {3,4,7}
                                                    {3,5,6}
                                                    {4,5,7}
                                                    {4,6,7}
                                                    {1,2,5,7}
                                                    {1,3,6,7}
		

Crossrefs

The subset case is A143823.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
      my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,bitor(b,1< n, ismaxl(b,w),
             my(s=self()(k+1, b,w));
             b+=1<Andrew Howroyd, Mar 27 2025

Extensions

a(21)-a(45) from Fausto A. C. Cariboni, Feb 08 2022

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A364467 Number of integer partitions of n where some part is the difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the parts are not disjoint from their own first differences.

Examples

			The a(3) = 1 through a(9) = 13 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (621)
                       (2211)   (3211)    (521)      (3321)
                       (21111)  (22111)   (3221)     (4221)
                                (211111)  (4211)     (4311)
                                          (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For all differences of pairs parts we have A363225, complement A364345.
The complement is counted by A363260.
For subsets of {1..n} we have A364466, complement A364463.
The strict case is A364536, complement A364464.
These partitions have ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A326017 Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 1, 1, 0, 1, 1, 2, 2, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 1, 4, 3, 2, 1, 1, 0, 1, 1, 3, 3, 4, 6, 4, 3, 2, 1, 1, 0, 1, 1, 1, 1, 3, 1, 6, 4
Offset: 0

Views

Author

Gus Wiseman, Jun 03 2019

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  1  1  1
  0  1  1  2  1  1
  0  1  1  1  2  1  1
  0  1  1  2  3  2  1  1
  0  1  1  2  1  3  2  1  1
  0  1  1  2  2  4  3  2  1  1
  0  1  1  2  3  1  4  3  2  1  1
  0  1  1  3  3  4  6  4  3  2  1  1
  0  1  1  1  1  3  1  6  4  3  2  1  1
  0  1  1  3  3  5  4  7  6  4  3  2  1  1
  0  1  1  2  3  5  4  1  7  6  4  3  2  1  1
  0  1  1  2  3  4  6  6 11  7  6  4  3  2  1  1
Row n = 9 counts the following partitions:
  (111111111)  (22221)  (333)   (432)  (54)     (63)    (72)   (81)  (9)
                        (3222)  (441)  (522)    (621)   (711)
                                       (531)    (6111)
                                       (51111)
		

Crossrefs

Programs

  • Mathematica
    ks[n_]:=Select[IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&];
    Table[Length[Select[ks[n],Length[#]==k==0||Max@@#==k&]],{n,0,15},{k,0,n}]
Showing 1-10 of 33 results. Next