A213127
Polylogarithm li(-n,-1/4) multiplied by (5^(n+1))/4.
Original entry on oeis.org
1, -1, -3, -1, 69, 455, -1155, -50065, -334155, 4107095, 112058925, 491352575, -24429589275, -535893782425, 606194735325, 249291355871375, 4380933801391125, -56204145098271625, -4031655689182933875
Offset: 0
polylog(-5,-1/4)*5^6/4 = 455
-
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*4^k, k=0..n),n=0..18); # Peter Luschny, Apr 21 2013
-
a[0] = 1; a[n_] := PolyLog[-n, -1/4] * 5^(n+1)/4;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 29 2018 *)
-
/* see A212846; run limnpq(nmax,1,4) */
-
x='x+O('x^66); Vec(serlaplace( 5/(4+exp(5*x)) )) \\ Joerg Arndt, Apr 21 2013
-
a(n) = sum(k=0, n, k!*(-1)^k*5^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
A015531
Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).
Original entry on oeis.org
0, 1, 4, 21, 104, 521, 2604, 13021, 65104, 325521, 1627604, 8138021, 40690104, 203450521, 1017252604, 5086263021, 25431315104, 127156575521, 635782877604, 3178914388021, 15894571940104, 79472859700521, 397364298502604, 1986821492513021, 9934107462565104
Offset: 0
- Iain Fox, Table of n, a(n) for n = 0..1431 (terms 0..1000 from Vincenzo Librandi)
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (4,5).
-
[Round(5^n/6): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(5^n/6), n=0..25); # Mircea Merca, Dec 28 2010
-
LinearRecurrence[{4,5},{0,1},30] (* Harvey P. Dale, Jul 09 2017 *)
-
a(n)=5^n\/6 ; \\ Charles R Greathouse IV, Apr 14 2014
-
first(n) = Vec(x/((1 - 5*x)*(1 + x)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
-
[lucas_number1(n,4,-5) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009
A213129
Polylogarithm li(-n,-1/6) multiplied by (7^(n+1))/6.
Original entry on oeis.org
1, -1, -5, -13, 115, 2099, 11395, -177373, -5116685, -40481581, 948973795, 36701972867, 375364322515, -12090607539661, -580544884927805, -7188739235243293, 301374306966657715, 17150539711123411859, 246564346727945106595, -12988846468460187345853
Offset: 0
polylog(-5,-1/6)*7^6/6 = 2099.
-
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*6^k, k=0..n),n=0..17); # Peter Luschny, Apr 21 2013
-
Table[If[n == 0, 1, PolyLog[-n, -1/6] 7^(n+1)/6], {n, 0, 19}] (* Jean-François Alcover, Jun 27 2019 *)
-
/* See A212846; run limnpq(nmax,1,6) */
-
x='x+O('x^66); Vec(serlaplace( 7/(6+exp(7*x)) )) \\ Joerg Arndt, Apr 21 2013
-
a(n) = sum(k=0, n, k!*(-1)^k*7^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
A355373
a(n) = Sum_{k=0..n} k! * (-1)^k * n^(n-k) * Stirling2(n,k).
Original entry on oeis.org
1, -1, 0, 3, 40, 455, 2016, -177373, -11564160, -497664081, -12796467200, 536297904659, 132025634657280, 14907422733429239, 1181852660381503488, 34684559693802943875, -11771644802057621110784, -3553614228958108389522721, -656899368126170250221715456
Offset: 0
-
a[n_] := Sum[k! * (-1)^k * n^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *)
-
a(n) = sum(k=0, n, k!*(-1)^k*n^(n-k)*stirling(n, k, 2));
Showing 1-4 of 4 results.
Comments