A213243
Number of nonzero elements in GF(2^n) that are cubes.
Original entry on oeis.org
1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 2047, 1365, 8191, 5461, 32767, 21845, 131071, 87381, 524287, 349525, 2097151, 1398101, 8388607, 5592405, 33554431, 22369621, 134217727, 89478485, 536870911, 357913941, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 22906492245
Offset: 1
-
[(2^n - 1) / GCD (2^n - 1, 3): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213243:=n->(2^n-1)/gcd(2^n-1,3): seq(A213243(n), n=1..50); # Wesley Ivan Hurt, Aug 23 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 3], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
LinearRecurrence[{0,5,0,-4},{1,1,7,5},40] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n)=(2^n-1)/gcd(2^n-1,3) \\ Edward Jiang, Sep 04 2014
A213246
Number of nonzero elements in GF(2^n) that are 9th powers.
Original entry on oeis.org
1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 29127, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 7635497415
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,65,0,0,0,0,0,-64).
-
List([1..40],n->(2^n-1)/Gcd(2^n-1,9)); # Muniru A Asiru, Jun 27 2018
-
[(2^n-1)/GCD(2^n-1, 9): n in [1..40]]; // Vincenzo Librandi, Mar 15 2013
-
A213246:=n->(2^n-1)/gcd(2^n-1,9): seq(A213246(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 9], {n, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,9) \\ Edward Jiang, Sep 04 2014
A213247
Number of nonzero elements in GF(2^n) that are 11th powers.
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1024).
-
[(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213247:=n->(2^n-1)/igcd(2^n-1,11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
-
{ for(n=1,36,if(n%10,a=2^n-1,a=(2^n-1)/11);print1(a,", ")) } \\ K. Spage, Aug 23 2014
A213248
Number of nonzero elements in GF(2^n) that are 13th powers.
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 315, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 1290555, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 5286113595
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4097, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4096).
-
[(2^n - 1) / GCD (2^n - 1, 13): n in [1..40]]; // Vincenzo Librandi, Mar 17 2013
-
A213248:=n->(2^n-1)/gcd(2^n-1,13): seq(A213248(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 13], {n, 40}] (* Vincenzo Librandi, Mar 17 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,13) \\ Edward Jiang, Sep 04 2014
A213244
Number of nonzero elements in GF(2^n) that are 5th powers.
Original entry on oeis.org
1, 3, 7, 3, 31, 63, 127, 51, 511, 1023, 2047, 819, 8191, 16383, 32767, 13107, 131071, 262143, 524287, 209715, 2097151, 4194303, 8388607, 3355443, 33554431, 67108863, 134217727
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 17, 0, 0, 0, -16).
-
[(2^n - 1) / GCD (2^n - 1, 5): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213244:=n->(2^n-1)/gcd(2^n-1,5): seq(A213244(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 5], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,5) \\ Edward Jiang, Sep 04 2014
A227984
Triangle T(n,k), read by rows: T(n,k) is the numerator of (1-2^(n-k+1))/(1-2^(k+1)).
Original entry on oeis.org
1, 3, 1, 7, 1, 1, 15, 7, 3, 1, 31, 5, 1, 1, 1, 63, 31, 15, 7, 3, 1, 127, 21, 31, 1, 7, 1, 1, 255, 127, 9, 31, 15, 1, 3, 1, 511, 85, 127, 21, 1, 5, 7, 1, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 341, 73, 17, 127, 1, 31, 1, 1, 1, 1, 4095, 2047, 1023
Offset: 0
Triangle begins:
1;
3, 1;
7, 1, 1;
15, 7, 3, 1;
31, 5, 1, 1, 1;
63, 31, 15, 7, 3, 1;
127, 21, 31, 1, 7, 1, 1;
255, 127, 9, 31, 15, 1, 3, 1;
511, 85, 127, 21, 1, 5, 7, 1, 1;
1023, 511, 255, 127, 63, 31, 15, 7, 3, 1;
2047, 341, 73, 17, 127, 1, 31, 1, 1, 1, 1; etc.
-
[Numerator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
-
a[n_, k_] := Numerator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
A228035
Triangle T(n,k), read by rows: T(n,k) is the denominator of (1-2^(n-k+1))/(1-2^(k+1)).
Original entry on oeis.org
1, 1, 3, 1, 1, 7, 1, 3, 7, 15, 1, 1, 1, 5, 31, 1, 3, 7, 15, 31, 63, 1, 1, 7, 1, 31, 21, 127, 1, 3, 1, 15, 31, 9, 127, 255, 1, 1, 7, 5, 1, 21, 127, 85, 511, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1, 1, 1, 1, 31, 1, 127, 17, 73, 341, 2047, 1, 3, 7, 15, 31, 63
Offset: 0
Triangle begins:
1;
1, 3;
1, 1, 7;
1, 3, 7, 15;
1, 1, 1, 5, 31;
1, 3, 7, 15, 31, 63;
1, 1, 7, 1, 31, 21, 127;
1, 3, 1, 15, 31, 9, 127, 255;
1, 1, 7, 5, 1, 21, 127, 85, 511;
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023;
1, 1, 1, 1, 31, 1, 127, 17, 73, 341, 2047; etc.
-
[Denominator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
-
a[n_, k_] := Denominator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
A228147
Triangle T(n,k), read by rows: T(n,k) is the denominator of (1+2^(n-k+1))/(1-2^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 1, 1, 7, 5, 1, 3, 7, 3, 31, 1, 1, 7, 5, 31, 21, 1, 3, 7, 15, 31, 63, 127, 1, 1, 7, 5, 31, 7, 127, 85, 1, 3, 7, 3, 31, 63, 127, 51, 511, 1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 1, 3, 7, 15, 31, 63, 127, 15, 511, 1023, 2047, 1, 1, 7, 5, 31
Offset: 0
Triangle begins:
1;
1,1;
1,3,7;
1,1,7,5;
1,3,7,3,31;
1,1,7,5,31,21;
1,3,7,15,31,63,127;
1,1,7,5,31,7,127,85;
1,3,7,3,31,63,127,51,511;
1,1,7,5,31,21,127,85,511,341;
1,3,7,15,31,63,127,15,511,1023,2047;
1,1,7,5,31,21,127,85,511,341,2047,1365; etc.
-
[Denominator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
-
a[n_, k_] := Denominator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
Showing 1-8 of 8 results.
Comments