cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A213243 Number of nonzero elements in GF(2^n) that are cubes.

Original entry on oeis.org

1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 2047, 1365, 8191, 5461, 32767, 21845, 131071, 87381, 524287, 349525, 2097151, 1398101, 8388607, 5592405, 33554431, 22369621, 134217727, 89478485, 536870911, 357913941, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 22906492245
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / gcd( M, 3 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014, verified by Robert Israel, Apr 22 2016: (Start)
a(n) = (-1)*((-2+(-1)^n)*(-1+2^n))/3.
a(n) = 5*a(n-2) - 4*a(n-4).
G.f.: x*(2*x^2+x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)). (End)
E.g.f.: (-1 + exp(x) - 2*exp(3*x) + 2*exp(4*x))*exp(-2*x)/3. - Ilya Gutkovskiy, Apr 22 2016

A213246 Number of nonzero elements in GF(2^n) that are 9th powers.

Original entry on oeis.org

1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 29127, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 7635497415
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / gcd( M, 9 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 65*a(n-6)-64*a(n-12).
G.f.: x*(2*x^2 -x +1)*(16*x^8 +16*x^7 +28*x^6 +16*x^5 +25*x^4 +8*x^3 +7*x^2 +2*x +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(x^2 -x +1)*(x^2 +x +1)*(4*x^2 -2*x +1)*(4*x^2 +2*x +1)). (End)
Conjectures verified by Robert Israel, Jun 27 2018.

A213247 Number of nonzero elements in GF(2^n) that are 11th powers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213248 (13th powers).

Programs

  • Magma
    [(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
    
  • Maple
    A213247:=n->(2^n-1)/igcd(2^n-1,11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
  • Mathematica
    Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
  • PARI
    { for(n=1,36,if(n%10,a=2^n-1,a=(2^n-1)/11);print1(a,", ")) } \\ K. Spage, Aug 23 2014

Formula

a(n) = M / GCD( M, 11 ) where M=2^n-1.
From Colin Barker, Aug 24 2014: (Start)
a(n) = 1025*a(n-10)-1024*a(n-20).
G.f.: x*(512*x^18 +768*x^17 +896*x^16 +960*x^15 +992*x^14 +1008*x^13 +1016*x^12 +1020*x^11 +1022*x^10 +93*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (1024*x^20 -1025*x^10 +1).
(End)
a(n) = (2^n - 1)/11 if n is divisible by 10, 2^n - 1 otherwise. - Robert Israel, Aug 24 2014

A213248 Number of nonzero elements in GF(2^n) that are 13th powers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 315, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 1290555, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 5286113595
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers).

Programs

Formula

a(n) = M / gcd( M, 13 ) where M=2^n-1.
Conjectures from Colin Barker, Aug 24 2014: (Start)
a(n) = 4097*a(n-12)-4096*a(n-24).
G.f.: x*(2048*x^22 +3072*x^21 +3584*x^20 +3840*x^19 +3968*x^18 +4032*x^17 +4064*x^16 +4080*x^15 +4088*x^14 +4092*x^13 +4094*x^12 +315*x^11 +2047*x^10 +1023*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (4096*x^24 -4097*x^12 +1). (End)

A213244 Number of nonzero elements in GF(2^n) that are 5th powers.

Original entry on oeis.org

1, 3, 7, 3, 31, 63, 127, 51, 511, 1023, 2047, 819, 8191, 16383, 32767, 13107, 131071, 262143, 524287, 209715, 2097151, 4194303, 8388607, 3355443, 33554431, 67108863, 134217727
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / GCD( M, 5 ) where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 17*a(n-4)-16*a(n-8).
G.f.: x*(8*x^6+12*x^5+14*x^4+3*x^3+7*x^2+3*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(x^2+1)*(4*x^2+1)).
(End)

A227984 Triangle T(n,k), read by rows: T(n,k) is the numerator of (1-2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 3, 1, 7, 1, 1, 15, 7, 3, 1, 31, 5, 1, 1, 1, 63, 31, 15, 7, 3, 1, 127, 21, 31, 1, 7, 1, 1, 255, 127, 9, 31, 15, 1, 3, 1, 511, 85, 127, 21, 1, 5, 7, 1, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 341, 73, 17, 127, 1, 31, 1, 1, 1, 1, 4095, 2047, 1023
Offset: 0

Views

Author

Vincenzo Librandi, Aug 12 2013

Keywords

Comments

The denominators are given in A228035.
The first column is A000225, the second column is A213243, and the third column is A213245.

Examples

			Triangle begins:
1;
3,     1;
7,     1,  1;
15,    7,  3,    1;
31,    5,  1,    1,  1;
63,   31,  15,   7,  3,  1;
127,  21,  31,   1,  7,  1,  1;
255,  127,  9,   31, 15, 1,  3,  1;
511,  85,  127,  21, 1,  5,  7,  1, 1;
1023, 511, 255, 127, 63, 31, 15, 7, 3, 1;
2047, 341, 73,   17, 127, 1, 31, 1, 1, 1, 1; etc.
		

Crossrefs

Programs

  • Magma
    [Numerator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Numerator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
    Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

A228035 Triangle T(n,k), read by rows: T(n,k) is the denominator of (1-2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 1, 3, 1, 1, 7, 1, 3, 7, 15, 1, 1, 1, 5, 31, 1, 3, 7, 15, 31, 63, 1, 1, 7, 1, 31, 21, 127, 1, 3, 1, 15, 31, 9, 127, 255, 1, 1, 7, 5, 1, 21, 127, 85, 511, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1, 1, 1, 1, 31, 1, 127, 17, 73, 341, 2047, 1, 3, 7, 15, 31, 63
Offset: 0

Views

Author

Vincenzo Librandi, Aug 12 2013

Keywords

Comments

The numerators are given in A227984.
The first diagonal is A000225, the second diagonal is A213243, the third diagonal is A213245.

Examples

			Triangle begins:
1;
1, 3;
1, 1, 7;
1, 3, 7, 15;
1, 1, 1, 5,  31;
1, 3, 7, 15, 31, 63;
1, 1, 7, 1,  31, 21, 127;
1, 3, 1, 15, 31, 9,  127, 255;
1, 1, 7, 5,  1,  21, 127, 85,  511;
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023;
1, 1, 1, 1,  31, 1,  127, 17,  73,  341, 2047; etc.
		

Crossrefs

Programs

  • Magma
    [Denominator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Denominator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
    Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

A228147 Triangle T(n,k), read by rows: T(n,k) is the denominator of (1+2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 1, 1, 7, 5, 1, 3, 7, 3, 31, 1, 1, 7, 5, 31, 21, 1, 3, 7, 15, 31, 63, 127, 1, 1, 7, 5, 31, 7, 127, 85, 1, 3, 7, 3, 31, 63, 127, 51, 511, 1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 1, 3, 7, 15, 31, 63, 127, 15, 511, 1023, 2047, 1, 1, 7, 5, 31
Offset: 0

Views

Author

Vincenzo Librandi, Aug 15 2013

Keywords

Comments

The numerators are given in A228146.
The first diagonal is A213243, the second diagonal is A213244, the third diagonal is A213246, the fourth diagonal is A213247.

Examples

			Triangle begins:
1;
1,1;
1,3,7;
1,1,7,5;
1,3,7,3,31;
1,1,7,5,31,21;
1,3,7,15,31,63,127;
1,1,7,5,31,7,127,85;
1,3,7,3,31,63,127,51,511;
1,1,7,5,31,21,127,85,511,341;
1,3,7,15,31,63,127,15,511,1023,2047;
1,1,7,5,31,21,127,85,511,341,2047,1365; etc.
		

Crossrefs

Programs

  • Magma
    [Denominator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Denominator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
Showing 1-8 of 8 results.