cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A213245 Number of nonzero elements in GF(2^n) that are 7th powers.

Original entry on oeis.org

1, 3, 1, 15, 31, 9, 127, 255, 73, 1023, 2047, 585, 8191, 16383, 4681, 65535, 131071, 37449, 524287, 1048575, 299593, 4194303, 8388607, 2396745, 33554431, 67108863, 19173961, 268435455, 536870911, 153391689, 2147483647, 4294967295, 1227133513, 17179869183, 34359738367, 9817068105
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / gcd( M, 7 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014, verified by Robert Israel, Nov 20 2016: (Start)
a(n) = 9*a(n-3)-8*a(n-6).
G.f.: x*(4*x^4+6*x^3+x^2+3*x+1) / ( (x-1)*(2*x-1)*(x^2+x+1)*(4*x^2+2*x+1) ). (End)

A213246 Number of nonzero elements in GF(2^n) that are 9th powers.

Original entry on oeis.org

1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 29127, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 7635497415
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / gcd( M, 9 ), where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 65*a(n-6)-64*a(n-12).
G.f.: x*(2*x^2 -x +1)*(16*x^8 +16*x^7 +28*x^6 +16*x^5 +25*x^4 +8*x^3 +7*x^2 +2*x +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(x^2 -x +1)*(x^2 +x +1)*(4*x^2 -2*x +1)*(4*x^2 +2*x +1)). (End)
Conjectures verified by Robert Israel, Jun 27 2018.

A213247 Number of nonzero elements in GF(2^n) that are 11th powers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213248 (13th powers).

Programs

  • Magma
    [(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
    
  • Maple
    A213247:=n->(2^n-1)/igcd(2^n-1,11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
  • Mathematica
    Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
  • PARI
    { for(n=1,36,if(n%10,a=2^n-1,a=(2^n-1)/11);print1(a,", ")) } \\ K. Spage, Aug 23 2014

Formula

a(n) = M / GCD( M, 11 ) where M=2^n-1.
From Colin Barker, Aug 24 2014: (Start)
a(n) = 1025*a(n-10)-1024*a(n-20).
G.f.: x*(512*x^18 +768*x^17 +896*x^16 +960*x^15 +992*x^14 +1008*x^13 +1016*x^12 +1020*x^11 +1022*x^10 +93*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (1024*x^20 -1025*x^10 +1).
(End)
a(n) = (2^n - 1)/11 if n is divisible by 10, 2^n - 1 otherwise. - Robert Israel, Aug 24 2014

A213248 Number of nonzero elements in GF(2^n) that are 13th powers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 315, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 1290555, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 5286113595
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers).

Programs

Formula

a(n) = M / gcd( M, 13 ) where M=2^n-1.
Conjectures from Colin Barker, Aug 24 2014: (Start)
a(n) = 4097*a(n-12)-4096*a(n-24).
G.f.: x*(2048*x^22 +3072*x^21 +3584*x^20 +3840*x^19 +3968*x^18 +4032*x^17 +4064*x^16 +4080*x^15 +4088*x^14 +4092*x^13 +4094*x^12 +315*x^11 +2047*x^10 +1023*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (4096*x^24 -4097*x^12 +1). (End)

A213244 Number of nonzero elements in GF(2^n) that are 5th powers.

Original entry on oeis.org

1, 3, 7, 3, 31, 63, 127, 51, 511, 1023, 2047, 819, 8191, 16383, 32767, 13107, 131071, 262143, 524287, 209715, 2097151, 4194303, 8388607, 3355443, 33554431, 67108863, 134217727
Offset: 1

Views

Author

Joerg Arndt, Jun 07 2012

Keywords

Crossrefs

Cf. A213243 (cubes), A213245 (7th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers).

Programs

Formula

a(n) = M / GCD( M, 5 ) where M=2^n-1.
Conjectures from Colin Barker, Aug 23 2014: (Start)
a(n) = 17*a(n-4)-16*a(n-8).
G.f.: x*(8*x^6+12*x^5+14*x^4+3*x^3+7*x^2+3*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(x^2+1)*(4*x^2+1)).
(End)

A088840 Denominator of sigma(4n)/sigma(n).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 31, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 21, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 31, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 127, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 31, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 21, 1, 1, 1, 7, 1, 1
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[DivisorSigma[1, 4*n]/DivisorSigma[1, n]], {n, 1, 128}]
    a[n_] := Module[{e = IntegerExponent[n, 2]}, (((-1)^e+2)*(2^(e+1)-1))/3]; Array[a, 100] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    A088840(n) = denominator(sigma(4*n)/sigma(n)); \\ Antti Karttunen, Nov 18 2017
    
  • PARI
    a(n) = {my(e = valuation(n, 2)); (((-1)^e+2) * (2^(e+1)-1))/3;} \\ Amiram Eldar, Oct 03 2023

Formula

From Amiram Eldar, Oct 03 2023: (Start)
Multiplicative with a(2^e) = (((-1)^e+2)*(2^(e+1)-1))/3 = A213243(e+1), and a(p^e) = 1 for an odd prime p.
a(n) = A213243(A007814(n+1)).
Dirichlet g.f.: ((8^s + 4^s + 2^(s+1))/(8^s + 4^s - 2^(s+2) - 4)) * zeta(s).
Sum_{k=1..n} a(k) = (2*n/(3*log(2))) * (log(n) + gamma - 1 + 7*log(2)/12), where gamma is Euler's constant (A001620). (End)

Extensions

Typo in definition corrected by Antti Karttunen, Nov 18 2017

A227984 Triangle T(n,k), read by rows: T(n,k) is the numerator of (1-2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 3, 1, 7, 1, 1, 15, 7, 3, 1, 31, 5, 1, 1, 1, 63, 31, 15, 7, 3, 1, 127, 21, 31, 1, 7, 1, 1, 255, 127, 9, 31, 15, 1, 3, 1, 511, 85, 127, 21, 1, 5, 7, 1, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 341, 73, 17, 127, 1, 31, 1, 1, 1, 1, 4095, 2047, 1023
Offset: 0

Views

Author

Vincenzo Librandi, Aug 12 2013

Keywords

Comments

The denominators are given in A228035.
The first column is A000225, the second column is A213243, and the third column is A213245.

Examples

			Triangle begins:
1;
3,     1;
7,     1,  1;
15,    7,  3,    1;
31,    5,  1,    1,  1;
63,   31,  15,   7,  3,  1;
127,  21,  31,   1,  7,  1,  1;
255,  127,  9,   31, 15, 1,  3,  1;
511,  85,  127,  21, 1,  5,  7,  1, 1;
1023, 511, 255, 127, 63, 31, 15, 7, 3, 1;
2047, 341, 73,   17, 127, 1, 31, 1, 1, 1, 1; etc.
		

Crossrefs

Programs

  • Magma
    [Numerator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Numerator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
    Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

A228035 Triangle T(n,k), read by rows: T(n,k) is the denominator of (1-2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 1, 3, 1, 1, 7, 1, 3, 7, 15, 1, 1, 1, 5, 31, 1, 3, 7, 15, 31, 63, 1, 1, 7, 1, 31, 21, 127, 1, 3, 1, 15, 31, 9, 127, 255, 1, 1, 7, 5, 1, 21, 127, 85, 511, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1, 1, 1, 1, 31, 1, 127, 17, 73, 341, 2047, 1, 3, 7, 15, 31, 63
Offset: 0

Views

Author

Vincenzo Librandi, Aug 12 2013

Keywords

Comments

The numerators are given in A227984.
The first diagonal is A000225, the second diagonal is A213243, the third diagonal is A213245.

Examples

			Triangle begins:
1;
1, 3;
1, 1, 7;
1, 3, 7, 15;
1, 1, 1, 5,  31;
1, 3, 7, 15, 31, 63;
1, 1, 7, 1,  31, 21, 127;
1, 3, 1, 15, 31, 9,  127, 255;
1, 1, 7, 5,  1,  21, 127, 85,  511;
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023;
1, 1, 1, 1,  31, 1,  127, 17,  73,  341, 2047; etc.
		

Crossrefs

Programs

  • Magma
    [Denominator((1-2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Denominator[(1 - 2^(n - k + 1))/(1 - 2^(k + 1))];
    Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

A228147 Triangle T(n,k), read by rows: T(n,k) is the denominator of (1+2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 1, 1, 7, 5, 1, 3, 7, 3, 31, 1, 1, 7, 5, 31, 21, 1, 3, 7, 15, 31, 63, 127, 1, 1, 7, 5, 31, 7, 127, 85, 1, 3, 7, 3, 31, 63, 127, 51, 511, 1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 1, 3, 7, 15, 31, 63, 127, 15, 511, 1023, 2047, 1, 1, 7, 5, 31
Offset: 0

Views

Author

Vincenzo Librandi, Aug 15 2013

Keywords

Comments

The numerators are given in A228146.
The first diagonal is A213243, the second diagonal is A213244, the third diagonal is A213246, the fourth diagonal is A213247.

Examples

			Triangle begins:
1;
1,1;
1,3,7;
1,1,7,5;
1,3,7,3,31;
1,1,7,5,31,21;
1,3,7,15,31,63,127;
1,1,7,5,31,7,127,85;
1,3,7,3,31,63,127,51,511;
1,1,7,5,31,21,127,85,511,341;
1,3,7,15,31,63,127,15,511,1023,2047;
1,1,7,5,31,21,127,85,511,341,2047,1365; etc.
		

Crossrefs

Programs

  • Magma
    [Denominator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
  • Mathematica
    a[n_, k_] := Denominator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
Showing 1-10 of 10 results.