A083420
a(n) = 2*4^n - 1.
Original entry on oeis.org
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers, Fig 11.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9, 2016.
- Eric Weisstein's World of Mathematics, Rule 220
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
A213243
Number of nonzero elements in GF(2^n) that are cubes.
Original entry on oeis.org
1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 2047, 1365, 8191, 5461, 32767, 21845, 131071, 87381, 524287, 349525, 2097151, 1398101, 8388607, 5592405, 33554431, 22369621, 134217727, 89478485, 536870911, 357913941, 2147483647, 1431655765, 8589934591, 5726623061, 34359738367, 22906492245
Offset: 1
-
[(2^n - 1) / GCD (2^n - 1, 3): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213243:=n->(2^n-1)/gcd(2^n-1,3): seq(A213243(n), n=1..50); # Wesley Ivan Hurt, Aug 23 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 3], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
LinearRecurrence[{0,5,0,-4},{1,1,7,5},40] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n)=(2^n-1)/gcd(2^n-1,3) \\ Edward Jiang, Sep 04 2014
A213245
Number of nonzero elements in GF(2^n) that are 7th powers.
Original entry on oeis.org
1, 3, 1, 15, 31, 9, 127, 255, 73, 1023, 2047, 585, 8191, 16383, 4681, 65535, 131071, 37449, 524287, 1048575, 299593, 4194303, 8388607, 2396745, 33554431, 67108863, 19173961, 268435455, 536870911, 153391689, 2147483647, 4294967295, 1227133513, 17179869183, 34359738367, 9817068105
Offset: 1
-
[(2^n - 1) / GCD (2^n - 1, 7): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213245:=n->(2^n-1)/gcd(2^n-1,7): seq(A213245(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 7], {n, 60}] (* Vincenzo Librandi, Mar 16 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,7) \\ Edward Jiang, Sep 04 2014
A213247
Number of nonzero elements in GF(2^n) that are 11th powers.
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1024).
-
[(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213247:=n->(2^n-1)/igcd(2^n-1,11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
-
{ for(n=1,36,if(n%10,a=2^n-1,a=(2^n-1)/11);print1(a,", ")) } \\ K. Spage, Aug 23 2014
A213248
Number of nonzero elements in GF(2^n) that are 13th powers.
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 315, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 1290555, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 5286113595
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4097, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4096).
-
[(2^n - 1) / GCD (2^n - 1, 13): n in [1..40]]; // Vincenzo Librandi, Mar 17 2013
-
A213248:=n->(2^n-1)/gcd(2^n-1,13): seq(A213248(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 13], {n, 40}] (* Vincenzo Librandi, Mar 17 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,13) \\ Edward Jiang, Sep 04 2014
A213244
Number of nonzero elements in GF(2^n) that are 5th powers.
Original entry on oeis.org
1, 3, 7, 3, 31, 63, 127, 51, 511, 1023, 2047, 819, 8191, 16383, 32767, 13107, 131071, 262143, 524287, 209715, 2097151, 4194303, 8388607, 3355443, 33554431, 67108863, 134217727
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 17, 0, 0, 0, -16).
-
[(2^n - 1) / GCD (2^n - 1, 5): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013
-
A213244:=n->(2^n-1)/gcd(2^n-1,5): seq(A213244(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014
-
Table[(2^n - 1)/GCD[2^n - 1, 5], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *)
-
a(n)=(2^n-1)/gcd(2^n-1,5) \\ Edward Jiang, Sep 04 2014
A228147
Triangle T(n,k), read by rows: T(n,k) is the denominator of (1+2^(n-k+1))/(1-2^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 1, 1, 7, 5, 1, 3, 7, 3, 31, 1, 1, 7, 5, 31, 21, 1, 3, 7, 15, 31, 63, 127, 1, 1, 7, 5, 31, 7, 127, 85, 1, 3, 7, 3, 31, 63, 127, 51, 511, 1, 1, 7, 5, 31, 21, 127, 85, 511, 341, 1, 3, 7, 15, 31, 63, 127, 15, 511, 1023, 2047, 1, 1, 7, 5, 31
Offset: 0
Triangle begins:
1;
1,1;
1,3,7;
1,1,7,5;
1,3,7,3,31;
1,1,7,5,31,21;
1,3,7,15,31,63,127;
1,1,7,5,31,7,127,85;
1,3,7,3,31,63,127,51,511;
1,1,7,5,31,21,127,85,511,341;
1,3,7,15,31,63,127,15,511,1023,2047;
1,1,7,5,31,21,127,85,511,341,2047,1365; etc.
-
[Denominator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..11]];
-
a[n_, k_] := Denominator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
Showing 1-7 of 7 results.
Comments