cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A356332 Bit-reverse the odd part of the negaFibonacci representation of -n (and negate): a(n) = -A356327(A057889(A215025(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 6, 7, 8, 9, 5, 11, 12, 31, 27, 23, 16, 17, 28, 19, 20, 21, 22, 15, 24, 30, 26, 14, 18, 29, 25, 13, 32, 33, 86, 82, 65, 71, 38, 78, 61, 57, 42, 51, 44, 45, 72, 83, 74, 62, 50, 43, 75, 53, 54, 55, 56, 41, 58, 77, 70, 40, 49, 63, 64, 36, 79, 85
Offset: 0

Views

Author

Rémy Sigrist, Aug 04 2022

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers similar to A343150, A344682, A345201 and A356331.

Examples

			The first terms, alongside the corresponding negaFibonacci representations, are:
  n   a(n)  nega(-n)  nega(-a(n))
  --  ----  --------  -----------
   0     0         0            0
   1     1        10           10
   2     2      1001         1001
   3     3      1000         1000
   4     4      1010         1010
   5    10    100101       101001
   6     6    100100       100100
   7     7    100001       100001
   8     8    100000       100000
   9     9    100010       100010
  10     5    101001       100101
  11    11    101000       101000
  12    12    101010       101010
  13    31  10010101     10101001
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(a(n)) = n.
a(n) < A000045(2*k+1) iff n < A000045(2*k+1).

A003714 Fibbinary numbers: if n = F(i1) + F(i2) + ... + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + ... + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1's.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 128, 129, 130, 132, 133, 136, 137, 138, 144, 145, 146, 148, 149, 160, 161, 162, 164, 165, 168, 169, 170, 256, 257, 258, 260, 261, 264
Offset: 0

Views

Author

Keywords

Comments

The name "Fibbinary" is due to Marc LeBrun.
"... integers whose binary representation contains no consecutive ones and noticed that the number of such numbers with n bits was fibonacci(n)". [posting to sci.math by Bob Jenkins (bob_jenkins(AT)burtleburtle.net), Jul 17 2002]
From Benoit Cloitre, Mar 08 2003: (Start)
A number m is in the sequence if and only if C(3m, m) (or equally, C(3m, 2m)) is odd.
a(n) == A003849(n) (mod 2). (End)
Numbers m such that m XOR 2*m = 3*m. - Reinhard Zumkeller, May 03 2005. [This implies that A003188(2*a(n)) = 3*a(n) holds for all n.]
Numbers whose base-2 representation contains no two adjacent ones. For example, m = 17 = 10001_2 belongs to the sequence, but m = 19 = 10011_2 does not. - Ctibor O. Zizka, May 13 2008
m is in the sequence if and only if the central Stirling number of the second kind S(2*m, m) = A007820(m) is odd. - O-Yeat Chan (math(AT)oyeat.com), Sep 03 2009
A000120(3*a(n)) = 2*A000120(a(n)); A002450 is a subsequence.
Every nonnegative integer can be expressed as the sum of two terms of this sequence. - Franklin T. Adams-Watters, Jun 11 2011
Subsequence of A213526. - Arkadiusz Wesolowski, Jun 20 2012
This is also the union of A215024 and A215025 - see the Comment in A014417. - N. J. A. Sloane, Aug 10 2012
The binary representation of each term m contains no two adjacent 1's, so we have (m XOR 2m XOR 3m) = 0, and thus a two-player Nim game with three heaps of (m, 2m, 3m) stones is a losing configuration for the first player. - V. Raman, Sep 17 2012
Positions of zeros in A014081. - John Keith, Mar 07 2022
These numbers are similar to Fibternary numbers A003726, Tribbinary numbers A060140 and Tribternary numbers. This sequence is a subsequence of Fibternary numbers A003726. The number of Fibbinary numbers less than any power of two is a Fibonacci number. We can generate this sequence recursively: start with 0 and 1; then, if x is in the sequence add 2x and 4x+1 to the sequence. The Fibbinary numbers have the property that the n-th Fibbinary number is even if the n-th term of the Fibonacci word is a. Respectively, the n-th Fibbinary number is odd (of the form 4x+1) if the n-th term of the Fibonacci word is b. Every number has a Fibbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
This is the ordered set S of numbers defined recursively by: 0 is in S; if x is in S, then 2*x and 4*x + 1 are in S. See Kimberling (2006) Example 3, in references below. - Harry Richman, Jan 31 2024

Examples

			From _Joerg Arndt_, Jun 11 2011: (Start)
In the following, dots are used for zeros in the binary representation:
  a(n)  binary(a(n))  n
    0:    .......     0
    1:    ......1     1
    2:    .....1.     2
    4:    ....1..     3
    5:    ....1.1     4
    8:    ...1...     5
    9:    ...1..1     6
   10:    ...1.1.     7
   16:    ..1....     8
   17:    ..1...1     9
   18:    ..1..1.    10
   20:    ..1.1..    11
   21:    ..1.1.1    12
   32:    .1.....    13
   33:    .1....1    14
   34:    .1...1.    15
   36:    .1..1..    16
   37:    .1..1.1    17
   40:    .1.1...    18
   41:    .1.1..1    19
   42:    .1.1.1.    20
   64:    1......    21
   65:    1.....1    22
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, 1973, pp. 85, 493.

Crossrefs

A007088(a(n)) = A014417(n) (same sequence in binary). Complement: A004780. Char. function: A085357. Even terms: A022340, odd terms: A022341. First difference: A129761.
Other sequences based on similar restrictions on binary expansion: A003726 & A278038, A003754, A048715, A048718, A107907, A107909.
3*a(n) is in A001969.
Cf. A014081 (count 11 bits).

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    a003714 n = a003714_list !! n
    a003714_list = 0 : f (singleton 1) where
       f :: Set Integer -> [Integer]
       f s = m : (f $ insert (4*m + 1) $ insert (2*m) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 03 2012, Feb 07 2012
    
  • Maple
    A003714 := proc(n)
        option remember;
        if n < 3 then
            n ;
        else
            2^(A072649(n)-1) + procname(n-combinat[fibonacci](1+A072649(n))) ;
        end if;
    end proc:
    seq(A003714(n),n=0..10) ;
    # To produce a table giving n, a(n) (base 10), a(n) (base 2) - from N. J. A. Sloane, Sep 30 2018
    # binary: binary representation of n, in human order
    binary:=proc(n) local t1,L;
    if n<0 then ERROR("n must be nonnegative"); fi;
    if n=0 then return([0]); fi;
    t1:=convert(n,base,2); L:=nops(t1);
    [seq(t1[L+1-i],i=1..L)];
    end;
    for n from 0 to 100 do t1:=A003714(n); lprint(n, t1, binary(t1)); od:
  • Mathematica
    fibBin[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; FromDigits[fr, 2]]; Table[fibBin[n], {n, 0, 61}] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[0, 270], ! MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &] (* Harvey P. Dale, Jul 17 2011 *)
    Select[Range[256], BitAnd[#, 2 #] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
    With[{r = Range[10^5]}, Pick[r, BitAnd[r, 2 r], 0]] (* Eric W. Weisstein, Aug 18 2017 *)
    Select[Range[0, 299], SequenceCount[IntegerDigits[#, 2], {1, 1}] == 0 &] (* Requires Mathematica version 10 or later. -- Harvey P. Dale, Dec 06 2018 *)
  • PARI
    msb(n)=my(k=1); while(k<=n, k<<=1); k>>1
    for(n=1,1e4,k=bitand(n,n<<1);if(k,n=bitor(n,msb(k)-1),print1(n", "))) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    select( is_A003714(n)=!bitand(n,n>>1), [0..266])
    {(next_A003714(n,t)=while(t=bitand(n+=1,n<<1), n=bitor(n,1<A003714(t)) \\ M. F. Hasler, Nov 30 2021
    
  • Python
    for n in range(300):
        if 2*n & n == 0:
            print(n, end=",") # Alex Ratushnyak, Jun 21 2012
    
  • Python
    def A003714(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= n:
                s += 1
                n -= d
        return s # Chai Wah Wu, Jun 14 2018
    
  • Python
    def fibbinary():
        x = 0
        while True:
            yield x
            y = ~(x >> 1)
            x = (x - y) & y # Falk Hüffner, Oct 23 2021
    (C++)
    /* start with x=0, then repeatedly call x=next_fibrep(x): */
    ulong next_fibrep(ulong x)
    {
        // 2 examples:         //  ex. 1             //  ex.2
        //                     // x == [*]0 010101   // x == [*]0 01010
        ulong y = x | (x>>1);  // y == [*]? 011111   // y == [*]? 01111
        ulong z = y + 1;       // z == [*]? 100000   // z == [*]? 10000
        z = z & -z;            // z == [0]0 100000   // z == [0]0 10000
        x ^= z;                // x == [*]0 110101   // x == [*]0 11010
        x &= ~(z-1);           // x == [*]0 100000   // x == [*]0 10000
        return x;
    }
    /* Joerg Arndt, Jun 22 2012 */
    
  • Scala
    (0 to 255).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) ? true : false; // Frank Hollstein, Jul 07 2021

Formula

No two adjacent 1's in binary expansion.
Let f(x) := Sum_{n >= 0} x^Fibbinary(n). (This is the generating function of the characteristic function of this sequence.) Then f satisfies the functional equation f(x) = x*f(x^4) + f(x^2).
a(0) = 0, a(1) = 1, a(2) = 2, a(n) = 2^(A072649(n) - 1) + a(n - A000045(1 + A072649(n))). - Antti Karttunen
It appears that this sequence gives m such that A082759(3*m) is odd; or, probably equivalently, m such that A037011(3*m) = 1. - Benoit Cloitre, Jun 20 2003
If m is in the sequence then so are 2*m and 4*m + 1. - Henry Bottomley, Jan 11 2005
A116361(a(n)) <= 1. - Reinhard Zumkeller, Feb 04 2006
A085357(a(n)) = 1; A179821(a(n)) = a(n). - Reinhard Zumkeller, Jul 31 2010
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 19 2012
a(n) = a(A193564(n+1))*2^(A003849(n) + 1) + A003849(n) for n > 0. - Daniel Starodubtsev, Aug 05 2021
There are Fibonacci(n+1) terms with up to n bits in this sequence. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=1} 1/a(n) = 3.704711752910469457886531055976801955909489488376627037756627135425780134020... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Edited by Antti Karttunen, Feb 21 2006
Cross reference to A007820 added (into O-Y.C. comment) by Jason Kimberley, Sep 14 2009
Typo corrected by Jeffrey Shallit, Sep 26 2014

A014417 Representation of n in base of Fibonacci numbers (the Zeckendorf representation of n). Also, binary words starting with 1 not containing 11, with the word 0 added.

Original entry on oeis.org

0, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101, 100000, 100001, 100010, 100100, 100101, 101000, 101001, 101010, 1000000, 1000001, 1000010, 1000100, 1000101, 1001000, 1001001, 1001010, 1010000, 1010001, 1010010, 1010100, 1010101
Offset: 0

Views

Author

Keywords

Comments

Old name was: Representation of n in base of Fibonacci numbers (the Zeckendorf representation of n). Also, binary vectors not containing 11.
For n > 0, write n = Sum_{i >= 2} eps(i) Fib_i where eps(i) = 0 or 1 and no 2 consecutive eps(i) can be 1 (see A035517); then a(n) is obtained by writing the eps(i) in reverse order.
"One of the most important properties of the Fibonacci numbers is the special way in which they can be used to represent integers. Let's write j >> k <==> j >= k+2. Then every positive integer has a unique representation of the form n = F_k1 + F_k2 + ... + F_kr, where k1 >> k2 >> ... >> kr >> 0. (This is 'Zeckendorf's theorem.') ... We can always find such a representation by using a "greedy" approach, choosing F_k1 to be the largest Fibonacci number =< n, then choosing F_k2 to be the largest that is =< n - F_k1 and so on. Fibonacci representation needs a few more bits because adjacent 1's are not permitted; but the two representations are analogous." [Concrete Math.]
Since the binary representation of n in base of Fibonacci numbers allows only the successive bit pairs 00, 01, 10 and leaves 11 unused, we can use a ternary representation using all trits 0, 1, 2 where 00 --> 0, 01 --> 1 and 10 --> 2 (e.g. binary 1001010 as ternary 1022). - Daniel Forgues, Nov 30 2009
The same sequence also arises when considering the NegaFibonacci representations of the integers, as follows. Take the NegaFibonacci representations of n = 0, 1, 2, ... (A215022) and of n = -1, -2, -3, ... (A215023), sort the union of these two lists into increasing binary order, and we get A014417. Likewise the corresponding list of decimal representations, A003714, is the union of A215024 and A215025 sorted into increasing order. - N. J. A. Sloane, Aug 10 2012
Also, numbers, written in binary, such that no adjacent bits are equal to 1: A one-dimensional analog of the matrices considered in A228277/A228285, A228390, A228476, A228506 etc. - M. F. Hasler, Apr 27 2014
The sequence of final bits, starting with a(1), is the complement of the Fibonacci word A005614. - N. J. A. Sloane, Oct 03 2018
This representation is named after the Belgian Army doctor and mathematician Edouard Zeckendorf (1901-1983). - Amiram Eldar, Jun 11 2021

Examples

			The Zeckendorf expansions of 1, 2, ... are 1 = 1 = Fib_2 -> 1, 2 = 2 = Fib_3 -> 10, 3 = Fib_4 -> 100, 4 = 3+1 = Fib_4 + Fib_2 -> 101, 5 = 5 = Fib_5 -> 1000, 6 = 1+5 = Fib_2 + Fib_5 -> 1001, etc.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 169.
  • Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

a(n) = A003714(n) converted to binary.
See A104326 for dual Zeckendorf representation of n.

Programs

  • Haskell
    a014417 0 = 0
    a014417 n = foldl (\v z -> v * 10 + z) 0 $ a189920_row n
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    A014417 := proc(n)
        local nshi,Z,i ;
        if n <= 1 then
            return n;
        end if;
        nshi := n ;
        Z := [] ;
        for i from A130234(n) to 2 by -1 do
            if nshi >= A000045(i) and nshi > 0 then
                Z := [1,op(Z)] ;
                nshi := nshi-A000045(i) ;
            else
                Z := [0,op(Z)] ;
            end if;
        end do:
        add( op(i,Z)*10^(i-1),i=1..nops(Z)) ;
    end proc: # R. J. Mathar, Jan 31 2015
  • Mathematica
    fb[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n * Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; Table[ fb[n], {n, 0, 30}] (* Robert G. Wilson v, May 15 2004 *)
    r = Map[Fibonacci, Range[2, 12]]; Table[Total[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] & /@ Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 0, 33}] (* Michael De Vlieger, Mar 27 2016, Version 10 *)
    FromDigits/@Select[Tuples[{0,1},7],SequenceCount[#,{1,1}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    Zeckendorf(n)=my(k=0,v,m); while(fibonacci(k)<=n,k=k+1); m=k-1; v=vector(m-1); v[1]=1; n=n-fibonacci(k-1); while(n>0,k=0; while(fibonacci(k)<=n,k=k+1); v[m-k+2]=1; n=n-fibonacci(k-1)); v \\ Ralf Stephan
    
  • PARI
    Zeckendorf(n)= { local(k); a=0; while(n>0, k=0; while(fibonacci(k)<=n, k=k+1); a=a+10^(k-3); n=n-fibonacci(k-1); ); a }
    { for (n=0, 10000, Zeckendorf(n); print(n," ",a); write("b014417.txt", n, " ", a) ) } \\ Harry J. Smith, Jan 17 2009
    
  • Python
    from sympy import fibonacci
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017, after PARI code by Harry J. Smith

Extensions

Comment layout fixed by Daniel Forgues, Dec 07 2009
Typo corrected by Daniel Forgues, Mar 25 2010
Definition expanded and Duchene et al. reference added by N. J. A. Sloane, Aug 07 2018
Name corrected by Michel Dekking, Nov 30 2020

A215023 NegaFibonacci representation for -n.

Original entry on oeis.org

0, 10, 1001, 1000, 1010, 100101, 100100, 100001, 100000, 100010, 101001, 101000, 101010, 10010101, 10010100, 10010001, 10010000, 10010010, 10000101, 10000100, 10000001, 10000000, 10000010, 10001001, 10001000, 10001010, 10100101, 10100100, 10100001, 10100000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 03 2012

Keywords

Comments

Let F_{-n} be the negative Fibonacci numbers (as defined in the first comment in A039834): F_{-1}=1, F_{-2}=-1, F_{-3}=2, F_{-4}=-3, F_{-5}=5, ..., F_{-n}=(-1)^(n-1)F_n.
Every integer has a unique representation as n = Sum_{k=1..r} c_k F_{-k} for some r, where the c_k are 0 or 1 and no two adjacent c's are 1.
Then a(n) = c_r ... c_3 c_2 c_1.

Examples

			-4 = -3 - 1 = F_{-4} + F_{-2}, so a(4) = 1010.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Combinatorial algorithms, Part 1, Addison-Wesley, 2011, pp. 168-171.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; a[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 10^(i - 1); k -= Fibonacci[-i]]; s]; Table[a[n], {n, 0, -100, -1}] (* Amiram Eldar, Oct 15 2019 *)
  • PARI
    a(n)=my(s=0,k=0,v);while(sCharles R Greathouse IV, Aug 03 2012 [Caution: returns wrong values for some values of n > 17. Amiram Eldar, Oct 15 2019]

Extensions

a(18) inserted by Amiram Eldar, Oct 11 2019

A215024 Decimal equivalent of binary number in A215022.

Original entry on oeis.org

0, 1, 4, 5, 18, 16, 17, 20, 21, 74, 72, 73, 66, 64, 65, 68, 69, 82, 80, 81, 84, 85, 298, 296, 297, 290, 288, 289, 292, 293, 266, 264, 265, 258, 256, 257, 260, 261, 274, 272, 273, 276, 277, 330, 328, 329, 322, 320, 321, 324, 325, 338, 336, 337, 340, 341, 1194
Offset: 0

Views

Author

N. J. A. Sloane, Aug 03 2012

Keywords

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; a[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 2^(i - 1); k -= Fibonacci[-i]]; s]; Array[a, 100, 0] (* Amiram Eldar, Oct 15 2019 *)
  • PARI
    a(n)=if(n<2,return(n));my(s=1,k=1,v);while(sCharles R Greathouse IV, Aug 03 2012 [Caution: returns wrong values for some values of n > 15. Amiram Eldar, Oct 15 2019]

Extensions

Data corrected by Amiram Eldar, Oct 11 2019

A356327 Replace 2^k in binary expansion of n with A039834(1+k).

Original entry on oeis.org

0, 1, -1, 0, 2, 3, 1, 2, -3, -2, -4, -3, -1, 0, -2, -1, 5, 6, 4, 5, 7, 8, 6, 7, 2, 3, 1, 2, 4, 5, 3, 4, -8, -7, -9, -8, -6, -5, -7, -6, -11, -10, -12, -11, -9, -8, -10, -9, -3, -2, -4, -3, -1, 0, -2, -1, -6, -5, -7, -6, -4, -3, -5, -4, 13, 14, 12, 13, 15, 16
Offset: 0

Views

Author

Rémy Sigrist, Aug 03 2022

Keywords

Comments

This sequence has similarities with A022290, and is related to negaFibonacci representations.

Examples

			For n = 13:
- 13 = 2^3 + 2^2 + 2^0,
- so a(13) = A039834(4) + A039834(3) + A039834(1) = -3 + 2 + 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[#].Fibonacci[-Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 69}] (* Rémy Sigrist, Aug 05 2022 *)
  • PARI
    a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=fibonacci(-1-k)); return (v) }
    
  • Python
    from sympy import fibonacci
    def A356327(n): return sum(fibonacci(-a)*int(b) for a, b in enumerate(bin(n)[:1:-1],start=1)) # Chai Wah Wu, Aug 31 2022

Formula

a(n) = Sum_{k>=0} A030308(n,k)*A039834(1+k).
a(A215024(n)) = n.
a(A215025(n)) = -n.
a(A003714(n)) = A309076(n).
Empirically:
- a(n) = 0 iff n = 0 or n belongs to A072197,
- a(n) = 1 iff n belongs to A020989,
- a(2*A215024(n)) = -A000201(n) for n > 0,
- a(3*A215024(n)) = -A060143(n),
- a(floor(A215024(n)/2)) = -A060143(n),
- a(4*A215024(n)) = A001950(n) for n > 0,
- a(floor(A215024(n)/4)) = A189663(n) for n > 0,
- a(2*A215025(n)) = A026351(n),
- a(3*A215025(n)) = A019446(n) for n > 0,
- a(floor(A215025(n)/2)) = A019446(n) for n > 0,
- a(4*A215025(n)) = -A004957(n),
- a(floor(A215025(n)/4)) = -A060144(n+1) for n >= 0.

A356326 The terms in the negaFibonacci representation of a(n) are the terms in common in the negaFibonacci representations of n and -n.

Original entry on oeis.org

0, 0, 0, 0, -1, 0, 0, 0, 0, -1, -3, -3, -1, 0, 0, 0, 0, 4, 0, 0, 0, 0, -1, -3, -3, -1, -8, -8, -8, -8, -1, -3, -3, -1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 12, 10, 10, 12, 0, 0, 0, 0, 4, 0, 0, 0, 0, -1, -3, -3, -1, -8, -8, -8, -8, -1, -3, -3, -1, -21, -21, -21, -21, -17
Offset: 0

Views

Author

Rémy Sigrist, Aug 03 2022

Keywords

Examples

			For n = 11:
- using F(-k) = A039834(k):
- 11 = F(-1) + F(-4) + F(-7),
- -11 = F(-4) + F(-6),
- so a(11) = F(-4) = -3.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 0 iff n belongs to A062877.
a(n) = A356327(A215024(n) AND A215025(n)) (where AND denotes the bitwise AND operator).
Empirically:
- a(A000045(k)+m) = a(A000045(k+1)-m) for k >= 0, m = 0..A000045(k+1)-A000045(k).

A356331 Bit-reverse the odd part of the negaFibonacci representation of n: a(n) = A356327(A057889(A215024(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 10, 11, 12, 13, 14, 15, 19, 9, 18, 16, 20, 21, 51, 44, 24, 38, 26, 32, 28, 45, 46, 31, 27, 33, 34, 35, 36, 48, 25, 39, 40, 49, 53, 43, 23, 29, 30, 47, 37, 41, 50, 22, 52, 42, 54, 55, 140, 133, 58, 106, 115, 79, 62, 113, 127, 99
Offset: 0

Views

Author

Rémy Sigrist, Aug 04 2022

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers similar to A343150, A344682, A345201 and A356332.

Examples

			The first terms, alongside the corresponding negaFibonacci representations, are:
  n   a(n)  nega(n)  nega(a(n))
  --  ----  -------  ----------
   0     0        0           0
   1     1        1           1
   2     2      100         100
   3     3      101         101
   4     4    10010       10010
   5     5    10000       10000
   6     6    10001       10001
   7     7    10100       10100
   8     8    10101       10101
   9    17  1001010     1010010
  10    10  1001000     1001000
  11    11  1001001     1001001
  12    12  1000010     1000010
  13    13  1000000     1000000
  14    14  1000001     1000001
  15    15  1000100     1000100
  16    19  1000101     1010001
  17     9  1010010     1001010
  18    18  1010000     1010000
  19    16  1010001     1000101
  20    20  1010100     1010100
  21    21  1010101     1010101
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(a(n)) = n.
a(n) <= A000045(2*k) iff n <= A000045(2*k).
Showing 1-8 of 8 results.