cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A217843 Numbers which are the sum of one or more consecutive nonnegative cubes.

Original entry on oeis.org

0, 1, 8, 9, 27, 35, 36, 64, 91, 99, 100, 125, 189, 216, 224, 225, 341, 343, 405, 432, 440, 441, 512, 559, 684, 729, 748, 775, 783, 784, 855, 1000, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1331, 1584, 1728, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2197
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Comments

Contains A000578 (cubes), A005898 (two consecutive cubes), A027602 (three consecutive cubes), A027603 (four consecutive cubes) etc. - R. J. Mathar, Nov 04 2012
See A265845 for sums of consecutive positive cubes in more than one way. - Reinhard Zumkeller, Dec 17 2015
From Lamine Ngom, Apr 15 2021: (Start)
a(n) can always be expressed as the difference of the squares of two triangular numbers (A000217).
A168566 is the subsequence A000217(n)^2 - 1.
a(n) is also the product of two nonnegative integers whose sum and difference are both promic.
See example and formula sections for details. (End)

Examples

			From _Lamine Ngom_, Apr 15 2021: (Start)
Arrange the positive terms in a triangle as follows:
n\k |   1    2    3    4    5    6    7
----+-----------------------------------
  0 |   1;
  1 |   8,   9;
  2 |  27,  35,  36;
  3 |  64,  91,  99, 100;
  4 | 125, 189, 216, 224, 225;
  5 | 216, 341, 405, 432, 440, 441;
  6 | 343, 559, 684, 748, 775, 783, 784;
Column 1: cubes = A000217(n+1)^2 - A000217(n)^2.
The difference of the squares of two consecutive triangular numbers (A000217) is a cube (A000578).
Column 2: sums of 2 consecutive cubes (A027602).
Column 3: sums of 3 consecutive cubes (A027603).
etc.
Column k: sums of k consecutive cubes.
Row n: A000217(n)^2 - A000217(m)^2, m < n.
T(n,n) = A000217(n)^2 (main diagonal).
T(n,n-1) = A000217(n)^2 - 1 (A168566) (2nd diagonal).
Now rectangularize this triangle as follows:
n\k |   1    2     3     4    5     6   ...
----+--------------------------------------
  0 |   1,   9,   36,  100,  225,  441, ...
  1 |   8,  35,   99,  224,  440,  783, ...
  2 |  27,  91,  216,  432,  775, 1287, ...
  3 |  64, 189,  405,  748, 1260, 1989, ...
  4 | 125, 341,  684, 1196, 1925, 2925, ...
  5 | 216, 559, 1071, 1800, 2800, 4131, ...
  6 | 343, 855, 1584, 2584, 3915, 5643, ...
The general form of terms is:
T(n,k) = [n^4 + A016825(k)*n^3 + A003154(k)*n^2 + A300758(k)*n]/4, sum of n consecutive cubes after k^3.
This expression can be factorized into [n*(n + A005408(k))*(n*(n + A005408(k)) + 4*A000217(k))]/4.
For k = 1, the sequence provides all cubes: T(n,1) = A000578(k).
For k = 2, T(n,2) = A005898(k), centered cube numbers, sum of two consecutive cubes.
For k = 3, T(n,3) = A027602(k), sum of three consecutive cubes.
For k = 4, T(n,4) = A027603(k), sum of four consecutive cubes.
For k = 5, T(n,5) = A027604(k), sum of five consecutive cubes.
T(n,n) = A116149(n), sum of n consecutive cubes after n^3 (main diagonal).
For n = 0, we obtain the subsequence T(0,k) = A000217(n)^2, product of two numbers whose difference is 0*1 (promic) and sum is promic too.
For n = 1, we obtain the subsequence T(1,k) = A168566(x), product of two numbers whose difference is 1*2 (promic) and sum is promic too.
For n = 2, we obtain the subsequence T(2,k) = product of two numbers whose difference is 2*3 (promic) and sum is promic too.
etc.
For n = x, we obtain the subsequence formed by products of two numbers whose difference is the promic x*(x+1) and sum is promic too.
Consequently, if m is in the sequence, then m can be expressed as the product of two nonnegative integers whose sum and difference are both promic. (End)
		

Crossrefs

Cf. A265845 (subsequence).
Cf. A000217 (triangular numbers), A046092 (4*A000217).
Cf. A168566 (A000217^2 - 1).
Cf. A002378 (promics), A016825 (singly even numbers), A003154 (stars numbers).
Cf. A000330 (square pyramidal numbers), A300758 (12*A000330).
Cf. A005408 (odd numbers).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a217843 n = a217843_list !! (n-1)
    a217843_list = f (singleton (0, (0,0))) (-1) where
       f s z = if y /= z then y : f s'' y else f s'' y
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 17 2015, May 12 2015
    
  • Mathematica
    nMax = 3000; t = {0}; Do[k = n; s = 0; While[s = s + k^3; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/3)}]; t = Union[t]
  • PARI
    lista(nn) = {my(list = List([0])); for (i=1, nn, my(s = 0); forstep(j=i, 1, -1, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ Michel Marcus, Nov 13 2020

Formula

a(n) >> n^2. Probably a(n) ~ kn^2 for some k but I cannot prove this. - Charles R Greathouse IV, Aug 07 2013
a(n) is of the form [x*(x+2*k+1)*(x*(x+2*k+1)+2*k*(k+1))]/4, sum of n consecutive cubes starting from (k+1)^3. - Lamine Ngom, Apr 15 2021

Extensions

Name edited by N. J. A. Sloane, May 24 2021

A003999 Sums of distinct nonzero 4th powers.

Original entry on oeis.org

1, 16, 17, 81, 82, 97, 98, 256, 257, 272, 273, 337, 338, 353, 354, 625, 626, 641, 642, 706, 707, 722, 723, 881, 882, 897, 898, 962, 963, 978, 979, 1296, 1297, 1312, 1313, 1377, 1378, 1393, 1394, 1552, 1553, 1568, 1569, 1633, 1634, 1649, 1650, 1921, 1922
Offset: 1

Views

Author

Keywords

Comments

5134240 is the largest positive integer not in this sequence. - Jud McCranie
If we tightened the sequence requirement so that the sum was of more than one 4th power, we would remove exactly 32 4th powers from the terms: row 4 of A332065 indicates which 4th powers would remain. After a(1) = 1, the next number in this sequence that is in the analogous sequences for cubes and squares is a(24) = 881 = A364637(4). - Peter Munn, Aug 01 2023

References

  • The Penguin Dictionary of Curious and Interesting Numbers, David Wells, entry 5134240.

Crossrefs

Cf. A046039 (complement).
Cf. A003995, A003997, A194768, A194769 (analogs for squares, cubes, 5th and 6th powers).
A217844 is a subsequence.

Programs

  • Maple
    (1+x)*(1+x^16)*(1+x^81)*(1+x^256)*(1+x^625)*(1+x^1296)*(1+x^2401)*(1+x^4096)*(1+x^6561)*(1+x^10000)
  • Mathematica
    max = 2000; f[x_] := Product[1 + x^(k^4), {k, 1, 10}]; Exponent[#, x]& /@ List @@ Normal[Series[f[x], {x, 0, max}]] // Rest (* Jean-François Alcover, Nov 09 2012, after Charles R Greathouse IV *)
  • PARI
    upto(lim)={
        lim\=1;
        my(v=List(),P=prod(n=1,lim^(1/4),1+x^(n^4),1+O(x^(lim+1))));
        for(n=1,lim,if(polcoeff(P,n),listput(v,n)));
        Vec(v)
    }; \\ Charles R Greathouse IV, Sep 02 2011

Formula

For n > 4244664, a(n) = n + 889576. - Charles R Greathouse IV, Sep 02 2011

A160828 a(n) = 4*n^4 + 24*n^3 + 84*n^2 + 144*n + 98.

Original entry on oeis.org

98, 354, 978, 2258, 4578, 8418, 14354, 23058, 35298, 51938, 73938, 102354, 138338, 183138, 238098, 304658, 384354, 478818, 589778, 719058, 868578, 1040354, 1236498, 1459218, 1710818, 1993698, 2310354, 2663378, 3055458, 3489378, 3968018, 4494354
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), May 27 2009

Keywords

Comments

Sums of 4 consecutive fourth powers.
Subsequence of A217844. - Michel Marcus, Jun 30 2013

Programs

  • Magma
    [4*n^4+24*n^3+84*n^2+144*n+98: n in [0..40]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    A000583 := proc(n) n^4 ; end: A160828 := proc(n) add(A000583(i),i=n..n+3) ; end: seq(A160828(n),n=0..40) ; # R. J. Mathar, May 29 2009
  • Mathematica
    Table[4n^4+24n^3+84n^2+144n+98,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{98,354,978,2258,4578},40] (* Harvey P. Dale, Mar 25 2012 *)
    CoefficientList[Series[(18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    x='x+O('x^50); Vec((18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5) \\ G. C. Greubel, Apr 30 2018
  • Python
    A160828_list, m = [], [96, 0, 80, 80, 98]
    for _ in range(10**2):
        A160828_list.append(m[-1])
        for i in range(4):
            m[i+1] += m[i] # Chai Wah Wu, Jan 23 2016
    

Formula

a(n) = Sum_{i=0..3} A000583(n+i) = Sum_{j=n..n+3} j^4 = A160827(n) + (n+3)^4.
G.f.: (18*x^4 - 72*x^3 + 188*x^2 - 136*x + 98)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009
a(0)=98, a(1)=354, a(2)=978, a(3)=2258, a(4)=4578, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 25 2012
E.g.f.: 2*(49 + 128*x + 92*x^2 + 24*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Apr 30 2018

Extensions

Edited and corrected by R. J. Mathar, May 29 2009

A165347 Primes which are sum of at least two consecutive fourth powers.

Original entry on oeis.org

17, 97, 337, 353, 881, 3697, 7793, 10657, 16561, 24979, 37699, 45377, 49297, 66977, 89041, 149057, 588737, 721687, 847601, 988417, 1146097, 1146727, 1603073, 1972097, 1975333, 2131937, 2522257, 2700979, 2782097, 2836961, 3553777
Offset: 1

Views

Author

Keywords

Examples

			17=2^4+1^4, 97=3^4+2^4, ...
37699 = 7^4 +..+ 11^4, .. , 17351662206054298079 = 27563^4 +..+ 27592^4. - _Chai Wah Wu_, Feb 02 2016
		

Crossrefs

Cf. A163251.
Subsequence of A217844. - Chai Wah Wu, Jan 29 2016

Programs

  • Mathematica
    lst={};Do[p=m^4;Do[p+=n^4;If[PrimeQ[p]&&p<=9767999,AppendTo[lst,p]],{n,m+1,6!,1}],{m,6!}];Union@lst

A265449 Palindromes that are the sums of consecutive fourth powers.

Original entry on oeis.org

0, 1, 353, 979, 14641, 16561, 998899, 2138312, 104060401, 1004006004001, 10004000600040001, 85045192129154058, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001
Offset: 1

Views

Author

Chai Wah Wu, Jan 29 2016

Keywords

Comments

Subsequence of A217844 and supersequence of A186080.

Examples

			353 = 2^4 + 3^4 + 4^4
979 = 1^4 + 2^4 + 3^4 + 4^4 + 5^4
16561 = 9^4 + 10^4
998899 = 19^4 +...+ 23^4
2138312 = 10^4 +...+ 25^4
85045192129154058 = 5582^4 +...+ 5666^4
		

Crossrefs

Programs

  • Python
    import heapq
    def ispal(n): s = str(n); return s == s[::-1]
    def afind():
      print("0, ") # special case
      N, T = 4, 1  # power, min number of terms
      sigma = sum(i**N for i in range(1, T+1))
      h = [(sigma, 1, T)]
      nextcount = T + 1
      while True:
        (v, s, l) = heapq.heappop(h)
        if ispal(v): print(f"{v}, [= Sum_{{i = {s}..{l}}} i^{N}]")
        if v >= sigma:
          sigma += nextcount**N
          heapq.heappush(h, (sigma, 1, nextcount))
          nextcount += 1
        v -= s**N; s += 1; l += 1; v += l**N
        heapq.heappush(h, (v, s, l))
    afind() # Michael S. Branicky, May 16 2021 after Bert Dobbelaere in A344338

Extensions

a(13)-a(15) from Giovanni Resta, Aug 27 2019
Showing 1-5 of 5 results.