A110162
Riordan array ((1-x)/(1+x), x/(1+x)^2).
Original entry on oeis.org
1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0
Triangle T(n,k) begins:
m\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: -2 1
2: 2 -4 1
3: -2 9 -6 1
4: 2 -16 20 -8 1
5: -2 25 -50 35 -10 1
6: 2 -36 105 -112 54 -12 1
7: -2 49 -196 294 -210 77 -14 1
8: 2 -64 336 -672 660 -352 104 -16 1
9: -2 81 -540 1386 -1782 1287 -546 135 -18 1
10: 2 -100 825 -2640 4290 -4004 2275 -800 170 -20 1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv:1405.6315 [math.CO], 2014.
-
/* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
-
Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
-
{T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
-
[[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018
A129862
Triangle read by rows: T(n,k) is the coefficient [x^k] of (-1)^n times the characteristic polynomial of the Cartan matrix for the root system D_n.
Original entry on oeis.org
1, 2, -1, 4, -4, 1, 4, -10, 6, -1, 4, -20, 21, -8, 1, 4, -34, 56, -36, 10, -1, 4, -52, 125, -120, 55, -12, 1, 4, -74, 246, -329, 220, -78, 14, -1, 4, -100, 441, -784, 714, -364, 105, -16, 1, 4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1, 4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1
Offset: 0
Triangle begins:
1;
2, -1;
4, -4, 1;
4, -10, 6, -1;
4, -20, 21, -8, 1;
4, -34, 56, -36, 10, -1;
4, -52, 125, -120, 55, -12, 1;
4, -74, 246, -329, 220, -78, 14, -1;
4, -100, 441, -784, 714, -364, 105, -16, 1;
4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1;
4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1;
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 60.
- Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978, p. 464.
-
A129862 := proc(n,k)
M := Matrix(n,n);
for r from 1 to n do
for c from 1 to n do
if r = c then
M[r,c] := 2;
elif abs(r-c)= 1 then
M[r,c] := -1;
else
M[r,c] := 0 ;
end if;
end do:
end do:
if n-2 >= 1 then
M[n,n-2] := -1 ;
M[n-2,n] := -1 ;
end if;
if n-1 >= 1 then
M[n-1,n] := 0 ;
M[n,n-1] := 0 ;
end if;
LinearAlgebra[CharacteristicPolynomial](M,x) ;
(-1)^n*coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, May 31 2014
-
(* First program *)
t[n_, m_, d_]:= If[n==m, 2, If[(m==d && n==d-2) || (n==d && m==d-2), -1, If[(n==m- 1 || n==m+1) && n<=d-1 && m<=d-1, -1, 0]]];
M[d_]:= Table[t[n,m,d], {n,1,d}, {m,1,d}];
p[n_, x_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
T[n_, k_]:= SeriesCoefficient[p[n, x], {x, 0, k}];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 21 2021 *)
(* Second program *)
Join[{{1}, {2, -1}}, CoefficientList[Table[(2-x)*LucasL[2(n-1), Sqrt[-x]], {n, 2, 10}], x]]//Flatten (* Eric W. Weisstein, Apr 04 2018 *)
-
def p(n,x): return 2*(2-x)*sum( ((n-1)/(2*n-k-2))*binomial(2*n-k-2, k)*(-x)^(n-k-1) for k in (0..n-1) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[1,2,-1]+flatten([T(n) for n in (2..12)]) # G. C. Greubel, Jun 21 2021
A156610
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -3, 1, 1, 9, 9, 1, 1, -21, 63, -21, 1, 1, 54, 378, 378, 54, 1, 1, -141, 2538, -5922, 2538, -141, 1, 1, 369, 17343, 104058, 104058, 17343, 369, 1, 1, -966, 118818, -1861482, 4786668, -1861482, 118818, -966, 1, 1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -3, 1;
1, 9, 9, 1;
1, -21, 63, -21, 1;
1, 54, 378, 378, 54, 1;
1, -141, 2538, -5922, 2538, -141, 1;
1, 369, 17343, 104058, 104058, 17343, 369, 1;
1, -966, 118818, -1861482, 4786668, -1861482, 118818, -966, 1;
1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1;
-
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 4], {n,0,15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 24 2021 *)
(* Second program *)
f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])];
Table[T[n, k, 4], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 24 2021 *)
-
@CachedFunction
def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) )
flatten([[T(n,k,4) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 24 2021
A075150
a(n) = L(n)*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (see comment to A061084).
Original entry on oeis.org
4, -1, 9, -16, 49, -121, 324, -841, 2209, -5776, 15129, -39601, 103684, -271441, 710649, -1860496, 4870849, -12752041, 33385284, -87403801, 228826129, -599074576, 1568397609, -4106118241, 10749957124, -28143753121, 73681302249, -192900153616, 505019158609, -1322157322201
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002
-
A075150:= func< n | (-1)^n*Lucas(n)^2 >; // G. C. Greubel, Jun 14 2025
-
CoefficientList[Series[(4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 30}], x]
LinearRecurrence[{-2,2,1},{4,-1,9},50] (* Harvey P. Dale, Nov 08 2011 *)
-
a(n) = round((2+(1/2*(-3-sqrt(5)))^n+(1/2*(-3+sqrt(5)))^n)) \\ Colin Barker, Oct 01 2016
-
Vec((4+7*x-x^2)/(1+2*x-2*x^2-x^3) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
def A075150(n): return (-1)**n*lucas_number2(n,1,-1)**2 # G. C. Greubel, Jun 14 2025
Showing 1-4 of 4 results.
Comments