cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)).
Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - Roger L. Bagula, Apr 12 2008
From Wolfdieter Lang, Nov 16 2012: (Start)
The alternating row sums are given in A219233.
For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677.
(End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Examples

			Triangle T(n,k) begins:
m\k  0    1    2     3     4     5     6    7    8   9 10 ...
0:   1
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14    1
8:   2  -64  336  -672   660  -352   104  -16    1
9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
		

Crossrefs

Cf. A128411. See A127677 for an almost identical triangle.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
    
  • Mathematica
    Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
    
  • Sage
    [[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018

Formula

T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - Paul Barry, Mar 22 2007
From Wolfdieter Lang, Nov 16 2012: (Start)
O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property).
O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0.
T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.)
(End)
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 29 2013

A129862 Triangle read by rows: T(n,k) is the coefficient [x^k] of (-1)^n times the characteristic polynomial of the Cartan matrix for the root system D_n.

Original entry on oeis.org

1, 2, -1, 4, -4, 1, 4, -10, 6, -1, 4, -20, 21, -8, 1, 4, -34, 56, -36, 10, -1, 4, -52, 125, -120, 55, -12, 1, 4, -74, 246, -329, 220, -78, 14, -1, 4, -100, 441, -784, 714, -364, 105, -16, 1, 4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1, 4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1
Offset: 0

Views

Author

Roger L. Bagula, May 23 2007

Keywords

Comments

Row sums of the absolute values are s(n) = 1, 3, 9, 21, 54, 141, 369, 966, 2529, 6621, 17334, ... (i.e., s(n) = 3*|A219233(n-1)| for n > 0). - R. J. Mathar, May 31 2014

Examples

			Triangle begins:
  1;
  2,   -1;
  4,   -4,    1;
  4,  -10,    6,    -1;
  4,  -20,   21,    -8,    1;
  4,  -34,   56,   -36,   10,    -1;
  4,  -52,  125,  -120,   55,   -12,    1;
  4,  -74,  246,  -329,  220,   -78,   14,   -1;
  4, -100,  441,  -784,  714,  -364,  105,  -16,   1;
  4, -130,  736, -1680, 1992, -1364,  560, -136,  18,  -1;
  4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 60.
  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978, p. 464.

Crossrefs

Programs

  • Maple
    A129862 := proc(n,k)
        M := Matrix(n,n);
        for r from 1 to n do
        for c from 1 to n do
            if r = c then
                M[r,c] := 2;
            elif abs(r-c)= 1 then
                M[r,c] := -1;
            else
                M[r,c] := 0 ;
            end if;
        end do:
        end do:
        if n-2 >= 1 then
            M[n,n-2] := -1 ;
            M[n-2,n] := -1 ;
        end if;
        if n-1 >= 1 then
            M[n-1,n] := 0 ;
            M[n,n-1] := 0 ;
        end if;
        LinearAlgebra[CharacteristicPolynomial](M,x) ;
        (-1)^n*coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, May 31 2014
  • Mathematica
    (* First program *)
    t[n_, m_, d_]:= If[n==m, 2, If[(m==d && n==d-2) || (n==d && m==d-2), -1, If[(n==m- 1 || n==m+1) && n<=d-1 && m<=d-1, -1, 0]]];
    M[d_]:= Table[t[n,m,d], {n,1,d}, {m,1,d}];
    p[n_, x_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
    T[n_, k_]:= SeriesCoefficient[p[n, x], {x, 0, k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 21 2021 *)
    (* Second program *)
    Join[{{1}, {2, -1}}, CoefficientList[Table[(2-x)*LucasL[2(n-1), Sqrt[-x]], {n, 2, 10}], x]]//Flatten (* Eric W. Weisstein, Apr 04 2018 *)
  • Sage
    def p(n,x): return 2*(2-x)*sum( ((n-1)/(2*n-k-2))*binomial(2*n-k-2, k)*(-x)^(n-k-1) for k in (0..n-1) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    [1,2,-1]+flatten([T(n) for n in (2..12)]) # G. C. Greubel, Jun 21 2021

Formula

T(n, k) = coefficients of ( (2-x)*Lucas(2*n-2, i*sqrt(x)) ) with T(0, 0) = 1, T(1, 0) = 2 and T(1, 1) = -1. - G. C. Greubel, Jun 21 2021

A156610 Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -3, 1, 1, 9, 9, 1, 1, -21, 63, -21, 1, 1, 54, 378, 378, 54, 1, 1, -141, 2538, -5922, 2538, -141, 1, 1, 369, 17343, 104058, 104058, 17343, 369, 1, 1, -966, 118818, -1861482, 4786668, -1861482, 118818, -966, 1, 1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 11 2009

Keywords

Comments

Cartan_Dn refers to a Cartan matrix of type D_n. - N. J. A. Sloane, Jun 25 2021

Examples

			Triangle begins:
  1;
  1,    1;
  1,   -3,      1;
  1,    9,      9,        1;
  1,  -21,     63,      -21,         1;
  1,   54,    378,      378,        54,         1;
  1, -141,   2538,    -5922,      2538,      -141,        1;
  1,  369,  17343,   104058,    104058,     17343,      369,      1;
  1, -966, 118818, -1861482,   4786668,  -1861482,   118818,   -966,    1;
  1, 2529, 814338, 33387858, 224175618, 224175618, 33387858, 814338, 2529, 1;
		

Crossrefs

Cf. A129862, A007318 (m=0), A156608 (m=2), A156609 (m=3), this sequence (m=4), A156612.

Programs

  • Mathematica
    (* First program *)
    b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
    M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
    p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
    f = Table[p[x, n], {n, 0, 20}];
    t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
    T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
    Table[T[n, k, 4], {n,0,15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 24 2021 *)
    (* Second program *)
    f[n_, x_]:= f[n,x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
    t[n_, k_]:= t[n,k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
    T[n_, k_, m_]:= T[n,k,m]= Round[t[n,m]/(t[k,m]*t[n-k,m])];
    Table[T[n, k, 4], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 24 2021 *)
  • Sage
    @CachedFunction
    def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
    def g(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
    def T(n,k,m): return round( g(n,m)/(g(k,m)*g(n-k,m)) )
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 24 2021

Formula

T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 4.
T(n, 1) = T(n, n-1) = [n==1] - 3*A219233(n-2)*[n >= 2]. - G. C. Greubel, Jun 24 2021

Extensions

Definition corrected and edited by G. C. Greubel, Jun 24 2021

A075150 a(n) = L(n)*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (see comment to A061084).

Original entry on oeis.org

4, -1, 9, -16, 49, -121, 324, -841, 2209, -5776, 15129, -39601, 103684, -271441, 710649, -1860496, 4870849, -12752041, 33385284, -87403801, 228826129, -599074576, 1568397609, -4106118241, 10749957124, -28143753121, 73681302249, -192900153616, 505019158609, -1322157322201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002

Keywords

Crossrefs

Programs

  • Magma
    A075150:= func< n | (-1)^n*Lucas(n)^2 >; // G. C. Greubel, Jun 14 2025
    
  • Mathematica
    CoefficientList[Series[(4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3), {x, 0, 30}], x]
    LinearRecurrence[{-2,2,1},{4,-1,9},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2+(1/2*(-3-sqrt(5)))^n+(1/2*(-3+sqrt(5)))^n)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((4+7*x-x^2)/(1+2*x-2*x^2-x^3) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    def A075150(n): return (-1)**n*lucas_number2(n,1,-1)**2 # G. C. Greubel, Jun 14 2025

Formula

a(n) = (-1)^n*A000032(2*n) + 2.
a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) with a(0)=4, a(1)=-1, a(2)=9.
G.f.: (4 + 7*x - x^2)/(1 + 2*x - 2*x^2 - x^3).
a(n) = (-1)^n*A001254(n). - R. J. Mathar, Jan 11 2012
a(n) = 2 + (1/2*(-3-sqrt(5)))^n + (1/2*(-3+sqrt(5)))^n. - Colin Barker, Oct 01 2016
From G. C. Greubel, Jun 14 2025: (Start)
a(n) = A000032(n)*A000032(-n) = (-1)^n*A000032(n)^2.
a(n) = A219233(n) + 2 + [n=0].
E.g.f.: 2*exp(-3*x/2)*cosh(sqrt(5)*x/2) + 2*exp(x). (End)
Showing 1-4 of 4 results.