A025227
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 3.
Original entry on oeis.org
0, 1, 2, 4, 12, 40, 144, 544, 2128, 8544, 35008, 145792, 615296, 2625792, 11311616, 49124352, 214838528, 945350144, 4182412288, 18593224704, 83015133184, 372090122240, 1673660915712, 7552262979584, 34178799378432, 155096251351040, 705533929816064
Offset: 0
For n=2, a(3) = 4 has the following words: x(x), (x)x, (x(x)), ((x)x) corresponding to A(1,2)=2, and A(2,2)=2. - William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010
- L. Guo and W. Sit, Enumeration of Rota-Baxter Words (extended abstract), ISSAC 2006 Proceedings, 123-131. [From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010]
- L. Guo and W. Sit, Enumeration of Rota-Baxter Words, to appear in Mathematics in Computer Science, Special Issue on AADIOS special session, ACA, 2009. [From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010]
- Michael De Vlieger, Table of n, a(n) for n = 0..1470
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 22.
- Maciej Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- Li Guo and William Y. Sit, Enumeration and generating functions of Rota-Baxter Words, Math. Comput. Sci. 4 (2010) 313-337.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 655
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 657
- Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
-
Table[CatalanNumber[n-1] Hypergeometric2F1[(1-n)/2, -n/2, 3/2-n, -1] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 17 2016 *)
-
a(n)=polcoeff((1-sqrt(1-4*x-4*x^2+x*O(x^n)))/2,n)
A219537
G.f. satisfies A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4).
Original entry on oeis.org
1, 1, 3, 13, 66, 366, 2148, 13115, 82449, 530095, 3469401, 23037642, 154820262, 1050999343, 7196493255, 49644745965, 344704716018, 2407157839593, 16895247295947, 119121868831235, 843306880720218, 5992060655349521, 42718501097385207, 305476181765843358
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 366*x^5 + 2148*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 167*x^4 + 942*x^5 + 5593*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 312*x^4 + 1794*x^5 + 10794*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 511*x^4 + 3000*x^5 + 18316*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 775*x^4 + 4651*x^5 + 28845*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 188*x^3 + 1116*x^4 + 6852*x^5 + 43204*x^6 +...
where A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4),
and A(x)^2 = 1 + x*(A(x)^2 + A(x)^5),
and A(x)^3 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^6),
and A(x)^4 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^7),
and A(x)^5 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^6 + A(x)^8), etc.
The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where
F(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 51*x^7 +...+ A001006(n-1)*x^n +...
is a g.f. of the Motzkin numbers (A001006, shifted right 1 place).
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...+ A106228(n)*x^n +...
satisfies G(x) = 1 + x*G(x)/(1 - x*G(x)^2).
-
rec := {(36*n^4+126*n^3+126*n^2+36*n)*a(n)+(-276*n^4-1548*n^3-3198*n^2-2898*n-972)*a(n+1)+(940*n^4+7090*n^3+19916*n^2+24650*n+11316)*a(n+2)+(-845*n^4-9000*n^3-34159*n^2-53004*n-26136)*a(n+3)+(-260*n^4-5200*n^3-37454*n^2-116538*n-133128)*a(n+4)+(459*n^4+9774*n^3+77955*n^2+276012*n+366060)*a(n+5)+(-54*n^4-1242*n^3-10686*n^2-40758*n-58140)*a(n+6), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 13, a(4) = 66, a(5) = 366}:
f:= gfun:-rectoproc(rec,a(n),remember):
map(f, [$0..50]); # Robert Israel, Feb 25 2018
-
nmax = 23; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x (A[x]^2 - A[x]^3 + A[x]^4)) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
/* Formula A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4): */
{a(n)=local(A=1);for(i=1,n,A=1+x*(A^2-A^3+A^4) +x*O(x^n));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* Formula using Series Reversion involving Motzkin numbers: */
{a(n)=local(A=1);A=(1+x-sqrt(1-2*x-3*x^2+x^3*O(x^n)))/(2*x); polcoeff(sqrt(1/x*serreverse(x/A^2)), n)}
for(n=0,25,print1(a(n),", "))
A364395
G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -8, 60, -552, 5648, -61712, 705104, -8321696, 100658368, -1241281536, 15546987648, -197234640384, 2529169695232, -32728878054144, 426864306146560, -5605439340018176, 74050470138645504, -983432207024885760, 13122261492710033408, -175836387068096147456
Offset: 0
-
A364395 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(2*n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364395(n),n=0..80); # R. J. Mathar, Jul 25 2023
a := n -> `if`(n=0, 1, (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 03 2024
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x/A[x]*(1 + 1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+2*k-2, n-1))/n);
A219538
G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2.
Original entry on oeis.org
1, 2, 12, 98, 924, 9468, 102432, 1151410, 13315692, 157406876, 1893480264, 23103024084, 285233168760, 3556744196000, 44730062281800, 566683825859730, 7225564521956940, 92653105887920556, 1194068058333608136, 15457771628663418748, 200916876963088849992
Offset: 0
G.f.: A(x) = 1 + 2*x + 12*x^2 + 98*x^3 + 924*x^4 + 9468*x^5 + 102432*x^6 +...
Related expansions:
A(x)^2 = 1 + 4*x + 28*x^2 + 244*x^3 + 2384*x^4 + 24984*x^5 +...
A(2)^3 = 1 + 6*x + 48*x^2 + 446*x^3 + 4524*x^4 + 48588*x^5 +...
A(2)^4 = 1 + 8*x + 72*x^2 + 712*x^3 + 7504*x^4 + 82704*x^5 +...
where A(x) = 1 + x*(A(x)^2 + 2*A(x)^3 + A(x)^4)/2.
The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where
F(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 +...+ 2*A000108(n)*x^n +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 2*x + 8*x^2 + 42*x^3 + 252*x^4 + 1636*x^5 +...+ A100327(n)*x^n +...
-
CoefficientList[Sqrt[1/x*InverseSeries[Series[x^3/(1-x-Sqrt[1-4*x])^2, {x, 0, 20}], x]],x] (* Vaclav Kotesovec, Dec 28 2013 *)
-
/* Formula A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2: */
{a(n)=local(A=1);for(i=1,n,A=1+x*A^2*(1+A +x*O(x^n))^2/2);polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* Formula using Series Reversion involving Catalan numbers: */
{a(n)=local(A=1);A=(1-x-sqrt(1-4*x +x^3*O(x^n)))/x; polcoeff(sqrt(1/x*serreverse(x/A^2)), n)}
for(n=0,25,print1(a(n),", "))
A219535
G.f. satisfies A(x) = 1 + x*(2*A(x)^2 + A(x)^3).
Original entry on oeis.org
1, 3, 21, 192, 2001, 22539, 267276, 3287496, 41556585, 536565225, 7046232285, 93820316412, 1263673602300, 17186898452772, 235709926636296, 3256050894487824, 45263067114496665, 632721425905230213, 8888476706476318047, 125418490224196533096, 1776734673565844413929
Offset: 0
G.f.: A(x) = 1 + 3*x + 21*x^2 + 192*x^3 + 2001*x^4 + 22539*x^5 +...
Related expansions:
A(x)^2 = 1 + 6*x + 51*x^2 + 510*x^3 + 5595*x^4 + 65148*x^5 +...
A(x)^3 = 1 + 9*x + 90*x^2 + 981*x^3 + 11349*x^4 + 136980*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 3*x + 12*x^2 + 57*x^3 + 300*x^4 + 1686*x^5 +...+ A047891(n+1)*x^n +...
-
CoefficientList[1/x*InverseSeries[Series[2*x^2/(1-2*x-Sqrt[1-8*x+4*x^2]), {x, 0, 21}], x],x] (* Vaclav Kotesovec, Dec 28 2013 *)
-
/* Formula A(x) = 1 + x*(2*A(x)^2 + A(x)^3): */
{a(n)=my(A=1);for(i=1,n,A=1+x*(2*A^2+A^3) +x*O(x^n));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* Formula using Series Reversion: */
{a(n)=my(A=1,G=(1-2*x-sqrt(1-8*x+4*x^2+x^3*O(x^n)))/(2*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Jul 28 2020
-
a(n) = sum(k=0, n, 2^k*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ Seiichi Manyama, Jul 28 2020
A219536
G.f. satisfies A(x) = 1 + x*(A(x)^2 + 2*A(x)^3).
Original entry on oeis.org
1, 3, 24, 255, 3102, 40854, 566934, 8164263, 120864390, 1827982362, 28122626760, 438720097638, 6923868098820, 110346550539780, 1773394661610258, 28707809007278775, 467677404522668742, 7661583171651546786, 126137791939032756960, 2085923447593966281378
Offset: 0
G.f.: A(x) = 1 + 3*x + 24*x^2 + 255*x^3 + 3102*x^4 + 40854*x^5 +...
Related expansions:
A(x)^2 = 1 + 6*x + 57*x^2 + 654*x^3 + 8310*x^4 + 112560*x^5 +...
A(x)^3 = 1 + 9*x + 99*x^2 + 1224*x^3 + 16272*x^4 + 227187*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 645*x^4 + 4791*x^5 +...+ A103210(n)*x^n +...
-
CoefficientList[1/x*InverseSeries[Series[4*x^2/(1-x-Sqrt[1-10*x+x^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 28 2013 *)
-
/* Formula A(x) = 1 + x*(A(x)^2 + 2*A(x)^3): */
{a(n)=my(A=1);for(i=1,n,A=1+x*(A^2+2*A^3) +x*O(x^n));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* Formula using Series Reversion: */
{a(n)=my(A=1,G=(1-x-sqrt(1-10*x+x^2+x^3*O(x^n)))/(4*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ Seiichi Manyama, Jul 26 2020
A371693
G.f. satisfies A(x) = ( 1 + x * A(x) * (1 + A(x)) )^2.
Original entry on oeis.org
1, 4, 28, 248, 2480, 26688, 301648, 3531424, 42449088, 520858496, 6497190528, 82146802944, 1050370074624, 13559126110720, 176469550681344, 2313050095245824, 30506619439926272, 404558181197010944, 5391161355764205568, 72156618656648237056, 969557980700415827968
Offset: 0
-
a(n, r=2, t=2, u=2) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A378239
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*n+2*r+k,n)/(2*n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 12, 0, 1, 6, 28, 100, 0, 1, 8, 48, 248, 968, 0, 1, 10, 72, 452, 2480, 10208, 0, 1, 12, 100, 720, 4680, 26688, 113792, 0, 1, 14, 132, 1060, 7728, 51504, 301648, 1318832, 0, 1, 16, 168, 1480, 11800, 87104, 591312, 3531424, 15732064, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 12, 28, 48, 72, 100, 132, ...
0, 100, 248, 452, 720, 1060, 1480, ...
0, 968, 2480, 4680, 7728, 11800, 17088, ...
0, 10208, 26688, 51504, 87104, 136352, 202560, ...
0, 113792, 301648, 591312, 1017184, 1621280, 2454256, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A363380
G.f. satisfies A(x) = 1 + x * A(x)^4 * (1 + A(x)^2).
Original entry on oeis.org
1, 2, 20, 284, 4712, 85392, 1638112, 32699472, 672188768, 14133399744, 302535052160, 6570819330688, 144442463464704, 3207564324825600, 71848240540852224, 1621452789508328704, 36831997860270007808, 841470878382566444032
Offset: 0
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+2*k+1, n)/(4*n+2*k+1));
A371658
G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x))^2.
Original entry on oeis.org
1, 4, 48, 784, 14784, 302976, 6555648, 147380480, 3408817152, 80592320512, 1938923790336, 47314993324032, 1168315059240960, 29136848453632000, 732857340425011200, 18569095605771632640, 473534596510970019840, 12144227894941523116032
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);
Showing 1-10 of 14 results.
Comments