cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047853 a(n) = A047848(5, n).

Original entry on oeis.org

1, 2, 10, 74, 586, 4682, 37450, 299594, 2396746, 19173962, 153391690, 1227133514, 9817068106, 78536544842, 628292358730, 5026338869834, 40210710958666, 321685687669322, 2573485501354570, 20587884010836554, 164703072086692426, 1317624576693539402, 10540996613548315210
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is A000420(n-1) for n >= 1.

Crossrefs

Programs

  • Magma
    [(8^n +6)/7: n in [0..40]]; // G. C. Greubel, Jan 12 2025
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=8*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    LinearRecurrence[{9, -8}, {1, 2}, 30] (* Harvey P. Dale, Dec 11 2016 *)
    (8^Range[0,40] +6)/7 (* G. C. Greubel, Jan 12 2025 *)
  • Python
    def A047853(n): return (pow(8,n) +6)//7
    print([A047853(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025

Formula

a(n) = (8^n + 6)/7. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 05 2009: (Start)
a(0)=1, a(1)=2; a(n) = 9*a(n-1) - 8*a(n-2) for n>1.
G.f.: (1 - 7*x)/(1 - 9*x + 8*x^2). (End)
a(n) = 8*a(n-1) - 6 for n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n+1) = A226308(3*n). - Philippe Deléham, Feb 24 2014
E.g.f.: exp(x)*(6 + exp(7*x))/7. - Stefano Spezia, Oct 16 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 07 2008

A233328 a(n) = (2*8^(n+1) - 9) / 7.

Original entry on oeis.org

1, 17, 145, 1169, 9361, 74897, 599185, 4793489, 38347921, 306783377, 2454267025, 19634136209, 157073089681, 1256584717457, 10052677739665, 80421421917329, 643371375338641, 5146971002709137, 41175768021673105, 329406144173384849, 2635249153387078801
Offset: 0

Views

Author

Philippe Deléham, Feb 23 2014

Keywords

Comments

Sum of n-th row of triangle of powers of 8: 1; 8 1 8; 64 8 1 8 64 ; 512 64 8 1 8 64 512; ...

Examples

			a(0) = 1;
a(1) = 8 + 1 + 8 = 17;
a(2) = 64 + 8 + 1 + 8 + 64 = 145;
a(3) = 512 + 64 + 8 + 1 + 8 + 64 + 512 = 1169; etc.
		

Crossrefs

Programs

Formula

G.f.: (1+8*x)/((1-x)*(1-8*x)).
a(n) = 9*a(n-1) - 8*a(n-2) for n>1, a(0)=1, a(1)=17.
a(n) = 8*a(n-1) + 9 for n>0, a(0)=1.
a(n) = A226308(3n+1).

A046636 Number of cubic residues mod 8^n.

Original entry on oeis.org

1, 5, 37, 293, 2341, 18725, 149797, 1198373, 9586981, 76695845, 613566757, 4908534053, 39268272421, 314146179365, 2513169434917, 20105355479333, 160842843834661, 1286742750677285, 10293942005418277, 82351536043346213, 658812288346769701, 5270498306774157605, 42163986454193260837
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (4*8^n + 3)/7.
a(n) = 8*a(n-1) - 3 (with a(0)=1). - Vincenzo Librandi, Nov 18 2010
From R. J. Mathar, Feb 28 2011: (Start)
a(n) = A046530(8^n) = A046630(3*n).
G.f.: (1-4*x)/((1-8*x)*(1-x)). (End)
a(n+1) = A226308(3*n+2). - Philippe Deléham, Feb 24 2014
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(4*exp(7*x) + 3)/7.
a(n) = 9*a(n-1) - 8*a(n-2).
a(n) = A047853(n+1)/2. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A341905 a(n) = a(n-1) + a(n-2) + 2*a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.

Original entry on oeis.org

3, 0, 2, 8, 10, 22, 48, 90, 182, 368, 730, 1462, 2928, 5850, 11702, 23408, 46810, 93622, 187248, 374490, 748982, 1497968, 2995930, 5991862, 11983728, 23967450, 47934902, 95869808, 191739610, 383479222, 766958448, 1533916890, 3067833782, 6135667568, 12271335130
Offset: 0

Views

Author

Michael De Vlieger, Jun 04 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <2|1|1>>^n. <<3, 0, 2>>)[1,1]:
    seq(a(n), n=0..34);  # Alois P. Heinz, Jun 04 2021
  • Mathematica
    LinearRecurrence[{1, 1, 2}, {3, 0, 2}, 35] (* or *)
    CoefficientList[Series[(-3 + 3 x + x^2)/(-1 + x + x^2 + 2 x^3), {x, 0, 34}], x]

Formula

G.f.: (-3 + 3*x + x^2)/(-1 + x + x^2 + 2*x^3).
a(n) = (10*2^(n-1) + 13*A049347(n) - 9*A079978(n+1) + 3)/7. - Greg Dresden, Jun 20 2021
Showing 1-4 of 4 results.