A000667
Boustrophedon transform of all-1's sequence.
Original entry on oeis.org
1, 2, 4, 9, 24, 77, 294, 1309, 6664, 38177, 243034, 1701909, 13001604, 107601977, 959021574, 9157981309, 93282431344, 1009552482977, 11568619292914, 139931423833509, 1781662223749884, 23819069385695177, 333601191667149054, 4884673638115922509
Offset: 0
...............1..............
............1..->..2..........
.........4..<-.3...<-..1......
......1..->.5..->..8...->..9..
- Alois P. Heinz, Table of n, a(n) for n = 0..485 (first 101 terms from T. D. Noe)
- C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform.
Absolute value of pairwise sums of
A009337.
-
a000667 n = if x == 1 then last xs else x
where xs@(x:_) = a227862_row n
-- Reinhard Zumkeller, Nov 01 2013
-
With[{nn=30},CoefficientList[Series[Exp[x](Tan[x]+Sec[x]),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Nov 28 2011 *)
t[, 0] = 1; t[n, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k];
a[n_] := t[n, n];
Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
x='x+O('x^33); Vec(serlaplace( exp(x)*(tan(x) + 1/cos(x)) ) ) \\ Joerg Arndt, Jul 30 2016
-
from itertools import islice, accumulate
def A000667_gen(): # generator of terms
blist = tuple()
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=1)))[-1]
A000667_list = list(islice(A000667_gen(),20)) # Chai Wah Wu, Jun 11 2022
-
# Algorithm of L. Seidel (1877)
def A000667_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
# print [A[z] for z in (-i//2..i//2)]
R.append(A[e*i//2])
return R
A000667_list(10) # Peter Luschny, Jun 02 2012
A008280
Boustrophedon version of triangle of Euler-Bernoulli or Entringer numbers read by rows.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, 61, 61, 56, 46, 32, 16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0
This version of the triangle begins:
[0] [ 1]
[1] [ 0, 1]
[2] [ 1, 1, 0]
[3] [ 0, 1, 2, 2]
[4] [ 5, 5, 4, 2, 0]
[5] [ 0, 5, 10, 14, 16, 16]
[6] [ 61, 61, 56, 46, 32, 16, 0]
[7] [ 0, 61, 122, 178, 224, 256, 272, 272]
[8] [1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0]
[9] [ 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936]
See A008281 and A108040 for other versions.
- M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 110.
- A. J. Kempner, On the shape of polynomial curves, Tohoku Math. J., 37 (1933), 347-362.
- A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 53.
- R. P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 141, Cambridge University Press (2012), p. 128, 174, 175.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. I. Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J. 63 (1991), 537-555.
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
- M. D. Atkinson, Zigzag permutations and comparisons of adjacent elements, Information Processing Letters 21 (1985), 187-189.
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
- Dominique Foata, Guo-Niu Han, and Volker Strehl, The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017). Example 4.3.
- Ira M. Gessel, Counting up-up-or-down-down permutations, arXiv:2411.16113 [math.CO], 2024.
- Boris Gourévitch, L'univers de Pi
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Christiane Poupard, De nouvelles significations énumératives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
- Sanjay Ramassamy, Modular periodicity of the Euler numbers and a sequence by Arnold, arXiv:1712.08666 [math.CO], 2017.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187; see Beilage 5, pp. 183-184.
- Ross Street, Trees, permutations and the tangent function, arXiv:math/0303267 [math.HO], 2003.
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a008280 n k = a008280_tabl !! n !! k
a008280_row n = a008280_tabl !! n
a008280_tabl = ox True a008281_tabl where
ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss
-- Reinhard Zumkeller, Nov 01 2013
-
max = 9; t[0, 0] = 1; t[n_, m_] /; n < m || m < 0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; tri = Table[t[n, m], {n, 0, max}, {m, 0, n}]; Flatten[ {Reverse[#[[1]]], #[[2]]} & /@ Partition[tri, 2]] (* Jean-François Alcover, Oct 24 2011 *)
T[0,0] := 1; T[n_?OddQ,k_]/;0<=k<=n := T[n,k]=T[n,k-1]+T[n-1,k-1]; T[n_?EvenQ,k_]/;0<= k<=n := T[n,k]=T[n,k+1]+T[n-1,k]; T[n_,k_] := 0; Flatten@Table[T[n,k], {n,0,9}, {k,0,n}] (* Oliver Seipel, Nov 24 2024 *)
-
T(n, m):=abs(sum(binomial(m, k)*euler(n-m+k), k, 0, m)); /* Vladimir Kruchinin, Apr 06 2015 */
-
# Python 3.2 or higher required.
from itertools import accumulate
A008280_list = blist = [1]
for n in range(10):
blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
A008280_list.extend(blist)
print(A008280_list) # Chai Wah Wu, Sep 20 2014
-
# Uses function seidel from A008281.
def A008280row(n): return seidel(n) if n % 2 else seidel(n)[::-1]
for n in range(8): print(A008280row(n)) # Peter Luschny, Jun 01 2022
-
# Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle.
def A008280_triangle(n) :
A = {-1:0, 0:1}
k = 0; e = 1
for i in range(n) :
Am = 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
print([A[z] for z in (-i//2..i//2)])
A008280_triangle(10) # Peter Luschny, Jun 02 2012
A261880
Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.
Original entry on oeis.org
1, -1, -2, 1, 2, 4, -2, -3, -5, -9, 5, 7, 10, 15, 24, -16, -21, -28, -38, -53, -77, 61, 77, 98, 126, 164, 217, 294, -272, -333, -410, -508, -634, -798, -1015, -1309, 1385, 1657, 1990, 2400, 2908, 3542, 4340, 5355, 6664
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: -1 -2
2: 1 2 4
3: -2 -3 -5 -9
4: 5 7 10 15 24,
5: -16 -21 -28 -38 -53 -77
...
Triangle of differences of the row entries of the preceding triangle starting with row n=1:
n\m 0 1 2 3 4 ...
0: -1
1: 1 2
2: -1 -2 -4
3: 2 3 5 9
4: -5 -7 -10 -15 -24
... .
This is the negative of the first triangle. Are there other sequences with the same property?
Showing 1-3 of 3 results.
Comments