cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A058257 Triangle read by rows: this is a variant of A008280 in which 2 rows go from left to right, 2 from right to left, 2 from left to right, etc.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 3, 2, 1, 0, 0, 0, 3, 5, 6, 6, 6, 0, 0, 3, 8, 14, 20, 26, 71, 71, 71, 68, 60, 46, 26, 0, 413, 342, 271, 200, 132, 72, 26, 0, 0, 0, 413, 755, 1026, 1226, 1358, 1430, 1456, 1456, 1456, 0, 0, 413, 1168, 2194, 3420, 4778, 6208, 7664, 9120, 10576
Offset: 0

Views

Author

N. J. A. Sloane, Dec 06 2000

Keywords

Comments

Suggested by Atkinson article in Information Processing Letters.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  1, 1, 1, 0;
  3, 2, 1, 0, 0;
  0, 3, 5, 6, 6, 6;
  ...
		

References

  • M. D. Atkinson, Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.

Crossrefs

Programs

  • Haskell
    a058257 n k = a058257_tabl !! n !! k
    a058257_row n = a058257_tabl !! n
    a058257_tabl = [1] : ox 0 [1] where
       ox turn xs = ys : ox (mod (turn + 1) 4) ys
          where ys | turn <= 1 = scanl (+) 0 xs
                   | otherwise = reverse $ scanl (+) 0 $ reverse xs
    -- Reinhard Zumkeller, Nov 01 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000

A108040 Reflection of triangle in A008280 in vertical axis.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 2, 4, 5, 5, 16, 16, 14, 10, 5, 0, 0, 16, 32, 46, 56, 61, 61, 272, 272, 256, 224, 178, 122, 61, 0, 0, 272, 544, 800, 1024, 1202, 1324, 1385, 1385, 7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385, 0, 0, 7936, 15872, 23536, 30656
Offset: 0

Views

Author

Keywords

Examples

			This version of the triangle begins:
.............1
...........1...0
.........0...1...1
.......2...2...1...0
.....0...2...4...5...5
..16..16..14..10...5...0
Kempner tableau begins:
....................1
....................1....0
...............0....1....1
...............2....2....1....0
..........0....2....4....5....5
.........16...16...14...10....5...0
.....0...16...32...46...56...61..61
...272..272..256..224..178..122..61..0
Column 1,1,1,2,4,14,46,224, ... is A005437.
Column 1,1,5,10,56,178, ... is A005438.
		

Crossrefs

See A008280 and A008281 for other versions, additional references, formulas, etc.

Programs

  • Haskell
    a108040 n k = a108040_tabl !! n !! k
    a108040_row n = a108040_tabl !! k
    a108040_tabl = ox False a008281_tabl where
      ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A008281 := proc(h,k) option remember ; if h=1 and k=1 or h=0 then RETURN(1) ; elif h>=1 and k> h then RETURN(0) ; elif h=k then RETURN( A008281(h,h-1)) ; else RETURN( add(A008281(h-1,j),j=h-k..h-1) ) ; fi ; end: A008280 := proc(h,k) if ( h <= 1 ) or ( h mod 2) = 1 then A008281(h,k) ; else A008281(h,h-k) ; fi ; end: A108040 := proc(h,k) A008280(h,h-k) ; end: for h from 0 to 13 do for k from 0 to h do printf("%d, ",A108040(h,k)) ; od ; od ; # R. J. Mathar, May 02 2007
  • Mathematica
    max = 11; t[0, 0] = 1; t[n_, m_] /; nA008280 = {Reverse[#[[1]]], #[[2]]}& /@ Partition[tri, 2] // Flatten[#, 1]&; A108040 = Reverse /@ A008280; A108040 // Flatten (* Jean-François Alcover, Jan 08 2014 *)
    T[0,0]:=1; T[n_?OddQ,k_]/;0<=k<=n := T[n,k]=T[n,k+1]+T[n-1,k]; T[n_?EvenQ,k_]/;0<=k<=n := T[n,k]=T[n,k-1]+T[n-1,k-1]; T[n_,k_] := 0; Flatten@Table[T[n,k], {n,0,10}, {k,0,n}] (* Oliver Seipel, Nov 24 2024 *)
  • Python
    # Uses function seidel from A008281.
    def A108040row(n): return seidel(n)[::-1] if n % 2 else seidel(n)
    for n in range(8): print(A108040row(n)) # Peter Luschny, Jun 01 2022

Formula

a(n,k) = A008280(n,n-k). - R. J. Mathar, May 02 2007

Extensions

More terms from R. J. Mathar, May 02 2007

A108039 Replace each entry 2^i(2j+1) of the triangle in A008280 with i and replace 0's with *'s; then the entries n in the new triangle do not occur beyond diagonal a(n), measured from the left edge and taking the left edge to be diagonal number 1.

Original entry on oeis.org

2, 4, 4, 4, 8, 8, 8, 8, 10, 12, 12, 16, 16, 16, 16, 16, 18, 20
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2005

Keywords

Examples

			3's do not occur beyond the 4th diagonal, so a(3) = 4.
Triangle begins:
       *
      * 0
     0 0 *
    * 0 1 1
   0 0 2 1 *
  * 0 1 1 4 4
		

Crossrefs

Cf. A008280.

Extensions

Corrected and extended by Sanjay Ramassamy, Nov 03 2018

A000111 Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, 370371188237525, 4951498053124096, 69348874393137901, 1015423886506852352, 15514534163557086905, 246921480190207983616, 4087072509293123892361
Offset: 0

Views

Author

Keywords

Comments

Number of linear extensions of the "zig-zag" poset. See ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
Number of increasing 0-1-2 trees on n vertices. - David Callan, Dec 22 2006
Also the number of refinements of partitions. - Heinz-Richard Halder (halder.bichl(AT)t-online.de), Mar 07 2008
The ratio a(n)/n! is also the probability that n numbers x1,x2,...,xn randomly chosen uniformly and independently in [0,1] satisfy x1 > x2 < x3 > x4 < ... xn. - Pietro Majer, Jul 13 2009
For n >= 2, a(n-2) = number of permutations w of an ordered n-set {x_1 < ... x_n} with the following properties: w(1) = x_n, w(n) = x_{n-1}, w(2) > w(n-1), and neither any subword of w, nor its reversal, has the first three properties. The count is unchanged if the third condition is replaced with w(2) < w(n-1). - Jeremy L. Martin, Mar 26 2010
A partition of zigzag permutations of order n+1 by the smallest or the largest, whichever is behind. This partition has the same recurrent relation as increasing 1-2 trees of order n, by induction the bijection follows. - Wenjin Woan, May 06 2011
As can be seen from the asymptotics given in the FORMULA section, one has lim_{n->oo} 2*n*a(n-1)/a(n) = Pi; see A132049/A132050 for the simplified fractions. - M. F. Hasler, Apr 03 2013
a(n+1) is the sum of row n in triangle A008280. - Reinhard Zumkeller, Nov 05 2013
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon (2011) give a far-reaching generalization of the bijection between Euler numbers and alternating permutations. - N. J. A. Sloane, Jul 09 2015
Number of treeshelves avoiding pattern T321. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link, see A278678 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that no three terms are equal. [Theorem 7 of Corteel, Martinez, Savage, and Weselcouch] - Eric M. Schmidt, Jul 17 2017
Number of self-dual edge-labeled trees with n vertices under "mind-body" duality. Also number of self-dual rooted edge-labeled trees with n vertices. See my paper linked below. - Nikos Apostolakis, Aug 01 2018
The ratio a(n)/n! is the volume of the convex polyhedron defined as the set of (x_1,...,x_n) in [0,1]^n such that x_i + x_{i+1} <= 1 for every 1 <= i <= n-1; see the solutions by Macdonald and Nelsen to the Amer. Math. Monthly problem referenced below. - Sanjay Ramassamy, Nov 02 2018
Number of total cyclic orders on {0,1,...,n} such that the triple (i-1,i,i+1) is positively oriented for every 1 <= i <= n-1; see my paper on cyclic orders linked below. - Sanjay Ramassamy, Nov 02 2018
The number of binary, rooted, unlabeled histories with n+1 leaves (following the definition of Rosenberg 2006). Also termed Tajima trees, Tajima genealogies, or binary, rooted, unlabeled ranked trees (Palacios et al. 2015). See Disanto & Wiehe (2013) for a proof. - Noah A Rosenberg, Mar 10 2019
From Gus Wiseman, Dec 31 2019: (Start)
Also the number of non-isomorphic balanced reduced multisystems with n + 1 distinct atoms and maximum depth. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The labeled version is A006472. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {12} {{1}{23}} {{{1}}{{2}{34}}} {{{{1}}}{{{2}}{{3}{45}}}}
{{{12}}{{3}{4}}} {{{{1}}}{{{23}}{{4}{5}}}}
{{{{1}{2}}}{{{3}}{{45}}}}
{{{{1}{23}}}{{{4}}{{5}}}}
{{{{12}}}{{{3}}{{4}{5}}}}
Also the number of balanced reduced multisystems with n + 1 equal atoms and maximum depth. This is possibly the meaning of Heinz-Richard Halder's comment (see also A002846, A213427, A265947). The non-maximum-depth version is A318813. For example, the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {11} {{1}{11}} {{{1}}{{1}{11}}} {{{{1}}}{{{1}}{{1}{11}}}}
{{{11}}{{1}{1}}} {{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
(End)
With s_n denoting the sum of n independent uniformly random numbers chosen from [-1/2,1/2], the probability that the closest integer to s_n is even is exactly 1/2 + a(n)/(2*n!). (See Hambardzumyan et al. 2023, Appendix B.) - Suhail Sherif, Mar 31 2024
The number of permutations of size n+1 that require exactly n passes through a stack (i.e. have reverse-tier n-1) with an algorithm that prioritizes outputting the maximum possible prefix of the identity in a given pass and reverses the remainder of the permutation for prior to the next pass. - Rebecca Smith, Jun 05 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 272*x^7 + 1385*x^8 + ...
Sequence starts 1,1,2,5,16,... since possibilities are {}, {A}, {AB}, {ACB, BCA}, {ACBD, ADBC, BCAD, BDAC, CDAB}, {ACBED, ADBEC, ADCEB, AEBDC, AECDB, BCAED, BDAEC, BDCEA, BEADC, BECDA, CDAEB, CDBEA, CEADB, CEBDA, DEACB, DEBCA}, etc. - _Henry Bottomley_, Jan 17 2001
		

References

  • M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 34, 932.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 258-260, section #11.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 66.
  • O. Heimo and A. Karttunen, Series help-mates in 8, 9 and 10 moves (Problems 2901, 2974-2976), Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society) vol. 60, no. 2/2006, pp. 75, 77.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 238.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 110.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997 and Vol. 2, 1999; see Problem 5.7.

Crossrefs

Cf. A000364 (secant numbers), A000182 (tangent numbers).
Cf. A181937 for n-alternating permutations.
Cf. A109449 for an extension to an exponential Riordan array.
Column k=2 of A250261.
For 0-1-2 trees with n nodes and k leaves, see A301344.
Matula-Goebel numbers of 0-1-2 trees are A292050.
An overview over generalized Euler numbers gives A349264.

Programs

  • Haskell
    a000111 0 = 1
    a000111 n = sum $ a008280_row (n - 1)
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A000111 := n-> n!*coeff(series(sec(x)+tan(x),x,n+1), x, n);
    s := series(sec(x)+tan(x), x, 100): A000111 := n-> n!*coeff(s, x, n);
    A000111:=n->piecewise(n mod 2=1,(-1)^((n-1)/2)*2^(n+1)*(2^(n+1)-1)*bernoulli(n+1)/(n+1),(-1)^(n/2)*euler(n)):seq(A000111(n),n=0..30); A000111:=proc(n) local k: k:=floor((n+1)/2): if n mod 2=1 then RETURN((-1)^(k-1)*2^(2*k)*(2^(2*k)-1)*bernoulli(2*k)/(2*k)) else RETURN((-1)^k*euler(2*k)) fi: end:seq(A000111(n),n=0..30); (C. Ronaldo)
    T := n -> 2^n*abs(euler(n,1/2)+euler(n,1)): # Peter Luschny, Jan 25 2009
    S := proc(n,k) option remember; if k=0 then RETURN(`if`(n=0,1,0)) fi; S(n,k-1)+S(n-1,n-k) end:
    A000364 := n -> S(2*n,2*n);
    A000182 := n -> S(2*n+1,2*n+1);
    A000111 := n -> S(n,n); # Peter Luschny, Jul 29 2009
    a := n -> 2^(n+2)*n!*(sum(1/(4*k+1)^(n+1), k = -infinity..infinity))/Pi^(n+1):
    1, seq(a(n), n = 1..22); # Emeric Deutsch, Aug 17 2009
    # alternative Maple program:
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    n=22; CoefficientList[Series[(1+Sin[x])/Cos[x], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011, after Michael Somos *)
    a[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1)-1)*BernoulliB[n+1])/(n+1)]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 09 2012, after C. Ronaldo *)
    ee = Table[ 2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, 26}]; Table[ Differences[ee, n] // First // Abs, {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013, after Paul Curtz *)
    a[ n_] := If[ n < 0, 0, (2 I)^n If[ EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]]; (* Michael Somos, Aug 15 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[{m = n - 1}, m! SeriesCoefficient[ 1 / (1 - Sin[x]), {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
    s[0] = 1; s[] = 0; t[n, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0](* Jean-François Alcover, Feb 12 2016 *)
    a[n_] := If[n == 0, 1, 2*Abs[PolyLog[-n, I]]]; (* Jean-François Alcover, Dec 02 2023, after M. F. Hasler *)
    a[0] := 1; a[1] := 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] a[k] a[n - 1 - k], {k, 0, n - 2}]; Map[a, Range[0, 26]] (* Oliver Seipel, May 24 2024 after Peter Bala *)
    a[0] := 1; a[1] := 1; a[n_] := a[n] = 1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k, 1, n-1}]; Map[#! a[#]&, Range[0, 26]] (* Oliver Seipel, May 27 2024 *)
  • Maxima
    a(n):=sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n); /* Vladimir Kruchinin, Aug 19 2010 */
    
  • Maxima
    a(n):=if n<2 then 1 else 2*sum(4^m*(sum((i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1),i,m,(n-1)/2)),m,0,(n-2)/2); /* Vladimir Kruchinin, Aug 09 2011 */
    
  • PARI
    {a(n) = if( n<1, n==0, n--; n! * polcoeff( 1 / (1 - sin(x + x * O(x^n))), n))}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    {a(n) = local(an); if( n<1, n>=0, an = vector(n+1, m, 1); for( m=2, n, an[m+1] = sum( k=0, m-1, binomial(m-1, k) * an[k+1] * an[m-k]) / 2); an[n+1])}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    z='z+O('z^66); egf = (1+sin(z))/cos(z); Vec(serlaplace(egf)) \\ Joerg Arndt, Apr 30 2011
    
  • PARI
    A000111(n)={my(k);sum(m=0,n\2,(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)}  \\ M. F. Hasler, May 19 2012
    
  • PARI
    A000111(n)=if(n,2*abs(polylog(-n,I)),1)  \\ M. F. Hasler, May 20 2012
    
  • Python
    # requires python 3.2 or higher
    from itertools import accumulate
    A000111_list, blist = [1,1], [1]
    for n in range(10**2):
        blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
        A000111_list.append(sum(blist)) # Chai Wah Wu, Jan 29 2015
    
  • Python
    from mpmath import *
    mp.dps = 150
    l = chop(taylor(lambda x: sec(x) + tan(x), 0, 26))
    [int(fac(i) * li) for i, li in enumerate(l)]  # Indranil Ghosh, Jul 06 2017
    
  • Python
    from sympy import bernoulli, euler
    def A000111(n): return abs(((1<Chai Wah Wu, Nov 13 2024
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000111_list(n) :
        R = []; A = {-1:0, 0:1}; k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            R.append(Am)
        return R
    A000111_list(22) # Peter Luschny, Mar 31 2012 (revised Apr 24 2016)
    

Formula

E.g.f.: (1+sin(x))/cos(x) = tan(x) + sec(x).
E.g.f. for a(n+1) is 1/(cos(x/2) - sin(x/2))^2 = 1/(1-sin(x)) = d/dx(sec(x) + tan(x)).
E.g.f. A(x) = -log(1-sin(x)), for a(n+1). - Vladimir Kruchinin, Aug 09 2010
O.g.f.: A(x) = 1+x/(1-x-x^2/(1-2*x-3*x^2/(1-3*x-6*x^2/(1-4*x-10*x^2/(1-... -n*x-(n*(n+1)/2)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
E.g.f. A(x) = y satisfies 2y' = 1 + y^2. - Michael Somos, Feb 03 2004
a(n) = P_n(0) + Q_n(0) (see A155100 and A104035), defining Q_{-1} = 0. Cf. A156142.
2*a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*a(n-k).
Asymptotics: a(n) ~ 2^(n+2)*n!/Pi^(n+1). For a proof, see for example Flajolet and Sedgewick.
a(n) = (n-1)*a(n-1) - Sum_{i=2..n-2} (i-1)*E(n-2, n-1-i), where E are the Entringer numbers A008281. - Jon Perry, Jun 09 2003
a(2*k) = (-1)^k euler(2k) and a(2k-1) = (-1)^(k-1)2^(2k)(2^(2k)-1) Bernoulli(2k)/(2k). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
|a(n+1) - 2*a(n)| = A000708(n). - Philippe Deléham, Jan 13 2007
a(n) = 2^n|E(n,1/2) + E(n,1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
a(n) = 2^(n+2)*n!*S(n+1)/(Pi)^(n+1), where S(n) = Sum_{k = -inf..inf} 1/(4k+1)^n (see the Elkies reference). - Emeric Deutsch, Aug 17 2009
a(n) = i^(n+1) Sum_{k=1..n+1} Sum_{j=0..k} binomial(k,j)(-1)^j (k-2j)^(n+1) (2i)^(-k) k^{-1}. - Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010
a(n) = sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*Stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n), n>0. - Vladimir Kruchinin, Aug 19 2010
If n==1(mod 4) is prime, then a(n)==1(mod n); if n==3(mod 4) is prime, then a(n)==-1(mod n). - Vladimir Shevelev, Aug 31 2010
For m>=0, a(2^m)==1(mod 2^m); If p is prime, then a(2*p)==1(mod 2*p). - Vladimir Shevelev, Sep 03 2010
From Peter Bala, Jan 26 2011: (Start)
a(n) = A(n,i)/(1+i)^(n-1), where i = sqrt(-1) and {A(n,x)}n>=1 = [1,1+x,1+4*x+x^2,1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials.
Equivalently, a(n) = i^(n+1)*Sum_{k=1..n} (-1)^k*k!*Stirling2(n,k) * ((1+i)/2)^(k-1) = i^(n+1)*Sum_{k = 1..n} (-1)^k*((1+i)/2)^(k-1)* Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.
This explicit formula for a(n) can be used to obtain congruence results. For example, for odd prime p, a(p) = (-1)^((p-1)/2) (mod p), as noted by Vladimir Shevelev above.
For the corresponding type B results see A001586. For the corresponding results for plane increasing 0-1-2 trees see A080635.
For generalized Eulerian, Stirling and Bernoulli numbers associated with the zigzag numbers see A145876, A147315 and A185424, respectively. For a recursive triangle to calculate a(n) see A185414.
(End)
a(n) = I^(n+1)*2*Li_{-n}(-I) for n > 0. Li_{s}(z) is the polylogarithm. - Peter Luschny, Jul 29 2011
a(n) = 2*Sum_{m=0..(n-2)/2} 4^m*(Sum_{i=m..(n-1)/2} (i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1)), n > 1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Aug 09 2011
a(n) = D^(n-1)(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1-x^2)*d/dx. Cf. A006154. a(n) equals the alternating sum of the nonzero elements of row n-1 of A196776. This leads to a combinatorial interpretation for a(n); for example, a(4*n+2) gives the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 1 (mod 4), minus the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 3 (mod 4). Cf A002017. - Peter Bala, Dec 06 2011
From Sergei N. Gladkovskii, Nov 14 2011 - Dec 23 2013: (Start)
Continued fractions:
E.g.f.: tan(x) + sec(x) = 1 + x/U(0); U(k) = 4k+1-x/(2-x/(4k+3+x/(2+x/U(k+1)))).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1 + x/(1 - x + x^2/G(0)); G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1/(1 - x/(1 + x^2/G(0))) ; G(k) = 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)); G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)) where G(k)= 1 - x^2/( (2*k+1)*(2*k+3) - (2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(U(0)-x) where U(k) = 4k+2 - x^2/U(k+1).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(2*U(0)-x) where U(k) = 4*k+1 - x^2/(16*k+12 - x^2/U(k+1)).
E.g.f.: tan(x) + sec(x) = 4/(2-x*G(0))-1 where G(k) = 1 - x^2/(x^2 - 4*(2*k+1)*(2*k+3)/G(k+1)).
G.f.: 1 + x/Q(0), m=+4, u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/(1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1)).
G.f.: conjecture: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1)).
E.g.f.: 1+ 4*x/(T(0) - 2*x), where T(k) = 4*(2*k+1) - 4*x^2/T(k+1):
E.g.f.: T(0)-1, where T(k) = 2 + x/(4*k+1 - x/(2 - x/( 4*k+3 + x/T(k+1)))). (End)
E.g.f.: tan(x/2 + Pi/4). - Vaclav Kotesovec, Nov 08 2013
Asymptotic expansion: 4*(2*n/(Pi*e))^(n+1/2)*exp(1/2+1/(12*n) -1/(360*n^3) + 1/(1260*n^5) - ...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = tan(x) + sec(x) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 1, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i).
Note, the same recurrence, but with the initial conditions a(0) = 0 and a(1) = 1, produces the sequence [0,1,0,1,0,4,0,34,0,496,...], an aerated version of A002105. (End)
a(n) = A186365(n)/n for n >= 1. - Anton Zakharov, Aug 23 2016
From Peter Luschny, Oct 27 2017: (Start)
a(n) = abs(2*4^n*(H(((-1)^n - 3)/8, -n) - H(((-1)^n - 7)/8, -n))) where H(z, r) are the generalized harmonic numbers.
a(n) = (-1)^binomial(n + 1, 2)*2^(2*n + 1)*(zeta(-n, 1 + (1/8)*(-7 + (-1)^n)) - zeta(-n, 1 + (1/8)*(-3 + (-1)^n))). (End)
a(n) = i*(i^n*Li_{-n}(-i) - (-i)^n*Li_{-n}(i)), where i is the imaginary unit and Li_{s}(z) is the polylogarithm. - Peter Luschny, Aug 28 2020
Sum_{n>=0} 1/a(n) = A340315. - Amiram Eldar, May 29 2021
a(n) = n!*Re([x^n](1 + I^(n^2 - n)*(2 - 2*I)/(exp(x) + I))). - Peter Luschny, Aug 09 2021

Extensions

Edited by M. F. Hasler, Apr 04 2013
Title corrected by Geoffrey Critzer, May 18 2013

A008281 Triangle of Euler-Bernoulli or Entringer numbers read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 4, 5, 5, 0, 5, 10, 14, 16, 16, 0, 16, 32, 46, 56, 61, 61, 0, 61, 122, 178, 224, 256, 272, 272, 0, 272, 544, 800, 1024, 1202, 1324, 1385, 1385, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0

Views

Author

Keywords

Comments

Zig-Zag numbers (see the Conway and Guy reference p. 110 and the J.-P. Delahaye reference, p. 31).
Approximation to Pi: 2*n*a(n-1,n-1)/a(n,n), n >= 3. See A132049(n)/A132050(n). See the Delahaye reference, p. 31.
The sequence (a(n,n)) of the last element of each row is that of Euler up/down numbers A000111, the Boustrophedon transform of sequence A000007 = (0^n) = (1, 0, 0, 0, ...). - M. F. Hasler, Oct 07 2017

Examples

			This version of the triangle begins:
[0] [1]
[1] [0,    1]
[2] [0,    1,    1]
[3] [0,    1,    2,    2]
[4] [0,    2,    4,    5,    5]
[5] [0,    5,   10,   14,   16,   16]
[6] [0,   16,   32,   46,   56,   61,   61]
[7] [0,   61,  122,  178,  224,  256,  272,  272]
[8] [0,  272,  544,  800, 1024, 1202, 1324, 1385, 1385]
[9] [0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936]
See A008280 and A108040 for other versions.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, p. 110.
  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.

Crossrefs

Programs

  • Haskell
    a008281 n k = a008281_tabl !! n !! k
    a008281_row n = a008281_tabl !! n
    a008281_tabl = iterate (scanl (+) 0 . reverse) [1]
    -- Reinhard Zumkeller, Sep 10 2013
    
  • Maple
    A008281 := proc(h,k) option remember ;
        if h=1 and k=1 or h=0 then
            RETURN(1) ;
        elif h>=1 and k> h then
            RETURN(0) ;
        elif h=k then
            RETURN( procname(h,h-1)) ;
        else
            RETURN( add(procname(h-1,j),j=h-k..h-1) ) ;
        fi ;
    end: # R. J. Mathar, Nov 27 2006
    # Alternative:
    T := proc(n, k) option remember;
    ifelse(k=0, 0^n, T(n, k-1) + T(n-1, n-k)) end: # Peter Luschny, Sep 30 2023
  • Mathematica
    a[0, 0] = 1; a[n_, m_] /; (n < m || m < 0) = 0; a[n_, m_] := a[n, m] = Sum[a[n-1, n-k], {k, m}]; Flatten[Table[a[n, m], {n, 0, 9}, {m, 0, n}]] (* Jean-François Alcover, May 31 2011, after formula *)
  • Python
    # Python 3.2 or higher required.
    from itertools import accumulate
    A008281_list = blist = [1]
    for _ in range(30):
        blist = [0]+list(accumulate(reversed(blist)))
        A008281_list.extend(blist) # Chai Wah Wu, Sep 18 2014
    
  • Python
    from functools import cache
    @cache
    def seidel(n):
        if n == 0: return [1]
        rowA = seidel(n - 1)
        row = [0] + seidel(n - 1)
        row[1] = row[n]
        for k in range(2, n + 1): row[k] = row[k - 1] + rowA[n - k]
        return row
    def A008281row(n): return seidel(n)
    for n in range(8): print(A008281row(n)) # Peter Luschny, Jun 01 2022

Formula

a(0,0)=1, a(n,m)=0 if n < m, a(n,m)=0 if m < 0, otherwise a(n,m) = Sum_{k=1..m} a(n-1,n-k).
T(n, k) = T(n, k-1) + T(n-1, n-k) for k > 0, T(n, 0) = 0^n. - Peter Luschny, Sep 30 2023

A000657 Median Euler numbers (the middle numbers of Arnold's shuttle triangle).

Original entry on oeis.org

1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0

Views

Author

Keywords

Comments

Also central terms of the triangle in A008280. - Reinhard Zumkeller, Nov 01 2013
Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 1, 4, 1, 7, 4, 1, 7, 4, 1, 7, ...] with an apparent period [4, 1, 7] of length 3 = phi(9)/2 beginning at a(2). - Peter Bala, May 08 2023

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

Cf. A084938, A002832. For a signed version see A099023.
Related polynomials in A098277.
A diagonal of A323834.
Cf. A005799.

Programs

  • Haskell
    a000657 n = a008280 (2 * n) n  -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
  • Mathematica
    max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
    T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
  • Maxima
    a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000657_list(n) :
        R = []; A = {-1:0, 0:1}
        k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) :
                Am += A[k]; A[k] = Am; k += e
            if e < 0 :
                R.append(A[0])
        return R
    A000657_list(30)  # Peter Luschny, Apr 02 2012
    

Formula

Row sums of triangle, read by rows, [0, 1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 2, 6, 5, 11, 8, 16, 11, 21, 14, ...] where DELTA is Deléham's operator defined in A084938.
G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1x/(1-1*3x/(1-2*5x/(1-2*7x/(1-3*9x/...))))). - Ralf Stephan, Sep 09 2004
G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+4*k+1) - x^2*(k+1)^2*(4*k+1)*(4*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013
G.f.: G(0)/(1-x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 - x*(8*k^2+4*k+1))*(1 - x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014
a(n) = (-1)^(n)*Sum_{k=0..n} C(n,k)*Euler(n+k). - Vladimir Kruchinin, Apr 06 2015
a(n) ~ 2^(4*n+5/2) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Apr 06 2015
Conjectural e.g.f. as a continued fraction: 1/(1 - (1 - exp(-2*t))/(2 - (1 - exp(-4*t))/(1 - (1 - exp(-6*t))/(2 - (1 - exp(-8*t))/(1 - ... )))) = 1 + t + 4*t^2/2! + 46*t^3/3! + .... Cf. A005799. - Peter Bala, Dec 26 2019

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
Corrected by Sean A. Irvine, Dec 22 2010

A099023 Diagonal of Euler-Seidel matrix with start sequence e.g.f. 1-tanh(x).

Original entry on oeis.org

1, -1, 4, -46, 1024, -36976, 1965664, -144361456, 13997185024, -1731678144256, 266182076161024, -49763143319190016, 11118629668610842624, -2925890822304510631936, 895658946905031792553984
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

T(2n,n), where T is A008280 (signed).

Crossrefs

Programs

  • Mathematica
    A099023List[n_] := Module[{e, dim, m, k}, dim = 2 n; e[0, 0] = 1; For[m = 1, m <= dim - 1, m++, If[EvenQ[m], e[m, 0] = 1; For[k = m - 1, k >= -1, k--, e[k, m - k] = e[k + 1, m - k - 1] - e[k, m - k - 1]], e[0, m] = 1; For[k = 1, k <= m + 1, k++, e[k, m - k] = e[k - 1, m - k + 1] + e[k - 1, m - k]]]]; Table[e[k, k], {k, 0, (dim + 1)/2 - 1}]];
    A099023List[15] (* Jean-François Alcover, Jun 11 2019, after Peter Luschny *)
  • Sage
    # Variant of an algorithm of L. Seidel (1877).
    def A099023_list(n) :
        dim = 2*n; E = matrix(ZZ, dim); E[0,0] = 1
        for m in (1..dim-1) :
            if m % 2 == 0 :
                E[m,0] = 1;
                for k in range(m-1,-1,-1) :
                    E[k,m-k] = E[k+1,m-k-1] - E[k,m-k-1]
            else :
                E[0,m] = 1;
                for k in range(1,m+1,1) :
                    E[k,m-k] = E[k-1,m-k+1] + E[k-1,m-k]
        return [E[k,k] for k in range((dim+1)//2)]
    # Peter Luschny, Jul 14 2012

Formula

|a(n)| = A000657(n) - Sean A. Irvine, Dec 22 2010
G.f.: 1/G(0) where G(k) = 1 + x*(k+1)*(4*k+1)/(1 + x*(k+1)*(4*k+3)/G(k+1) ) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013
G.f.: G(0)/(1+x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 + x*(8*k^2+4*k+1))*(1 + x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014

A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.

Original entry on oeis.org

1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0

Views

Author

Paul Curtz, Mar 08 2014

Keywords

Examples

			The triangle T(n,k) begins:
                      1
                    0   1
                 -1  -1   0
                0  -1  -2  -2
              5   5   4   2   0
             ...
The array read as a table, A(n,k) = T(n+k, k), starts:
     1,    1,    0,   -2,    0,   16,    0, -272,    0, ...
     0,   -1,   -2,    2,   16,  -16, -272,  272, ...
    -1,   -1,    4,   14,  -32, -256,  544, ...
     0,    5,   10,  -46, -224,  800, ...
     5,    5,  -56, -178, 1024, ...
     0,  -61, -122, 1202, ...
   -61,  -61, 1324, ...
     0, 1385, ...
  1385, ...
  ...
For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
		

Crossrefs

Unsigned version is A008280.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, m_] /; nJean-François Alcover, Dec 30 2014 *)
  • Maxima
    T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* Vladimir Kruchinin, Apr 06 2015 */
    
  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

a(n) = A057077(n)*A008280(n) by rows.
a(n) is the increasing antidiagonals of the difference table of A155585(n).
Central column of triangle: A099023(n).
Right main diagonal of triangle: A155585(n) (see A009006(n)).
Left main diagonal of triangle: A122045(n).
T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - Vladimir Kruchinin, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]
T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - Petros Hadjicostas, Feb 21 2021

A227862 A boustrophedon triangle.

Original entry on oeis.org

1, 1, 2, 4, 3, 1, 1, 5, 8, 9, 24, 23, 18, 10, 1, 1, 25, 48, 66, 76, 77, 294, 293, 268, 220, 154, 78, 1, 1, 295, 588, 856, 1076, 1230, 1308, 1309, 6664, 6663, 6368, 5780, 4924, 3848, 2618, 1310, 1, 1, 6665, 13328, 19696, 25476, 30400, 34248, 36866, 38176, 38177
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 01 2013

Keywords

Comments

T(n, n * (n mod 2)) = A000667(n).

Examples

			First nine rows:
.  0:                                    1
.  1:                               1   ->  2
.  2:                           4   <-   3  <-  1
.  3:                       1 ->    5 ->   8   ->   9
.  4:                   24  <-  23  <-  18  <-  10  <-  1
.  5:              1  ->  25  ->  48  ->   66 ->   76  ->  77
.  6:          294 <-  293 <-  268 <-  220 <-  154  <-  78   <-  1
.  7:      1  ->  295 ->  588 ->  856 -> 1076 -> 1230 -> 1308 -> 1309
.  8:  6664 <- 6663 <- 6368 <- 5780 <- 4924 <- 3848 <- 2618 <- 1310  <- 1 .
		

Crossrefs

Cf. A008280.

Programs

  • Haskell
    a227862 n k = a227862_tabl !! n !! k
    a227862_row n = a227862_tabl !! n
    a227862_tabl = map snd $ iterate ox (False, [1]) where
       ox (turn, xs) = (not turn, if turn then reverse ys else ys)
          where ys = scanl (+) 1 (if turn then reverse xs else xs)
  • Mathematica
    T[0, 0] = 1; T[n_?OddQ, 0] = 1; T[n_?EvenQ, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[n], T[n, k - 1] + T[n - 1, k - 1], T[n, k + 1] + T[n - 1, k]]; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)

A106243 Triangle read by rows from left to right. However, triangle is constructed in the boustrophedon way, reading alternately right to left and left to right. Top entry is 1. In all later rows, initial entry is 0, other entries are sum of previous entry in that row plus sum of two entries above it in previous row.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 2, 3, 3, 13, 13, 11, 6, 0, 0, 26, 50, 67, 73, 73, 505, 505, 479, 403, 286, 146, 0, 0, 1010, 1994, 2876, 3565, 3997, 4143, 4143, 39313, 39313, 38303, 35299, 30429, 23988, 16426, 8286, 0, 0, 78626, 156242, 229844, 295572, 349989, 390403
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2005

Keywords

Examples

			Triangle begins:
            1
          0   1
        1   1   0
      0   2   3   3
   13  13  11   6   0   (e.g., 11 = 6 + 3 + 2)
  0  26  50  67  73  73 (e.g., 50 = 26 + 13 + 11)
		

Crossrefs

Cf. A007318, A008280, A008281, A106242. The row ends give A059294. Row sums give A106327.

Programs

  • Maple
    T[0,0]:=1: for n from 0 to 12 do T[n,-1]:=0 od: for n from 0 to 12 do T[n,n+1]:=0 od: for n from 1 by 2 to 12 do T[n,0]:=0: for k from 1 to n do T[n,k]:=T[n,k-1]+T[n-1,k]+T[n-1,k-1] od: T[n+1,n+1]:=0: for j from 1 to n+1 do T[n+1,n+1-j]:=T[n+1,n+2-j]+T[n,n+1-j]+T[n,n-j] od: od: for n from 0 to 9 do seq(T[n,k],k=0..n) od; # yields sequence in triangular form; not necessarily the best Maple program # Emeric Deutsch, Aug 03 2005

Extensions

More terms from Emeric Deutsch, Aug 03 2005
Showing 1-10 of 13 results. Next