A109449
Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
5, 8, 6, 4, 1;
16, 25, 20, 10, 5, 1;
61, 96, 75, 40, 15, 6, 1;
272, 427, 336, 175, 70, 21, 7, 1;
1385, 2176, 1708, 896, 350, 112, 28, 8, 1;
7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1;
50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, The Swiss-Knife polynomials.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a109449 n k = a109449_row n !! k
a109449_row n = zipWith (*)
(a007318_row n) (reverse $ take (n + 1) a000111_list)
a109449_tabl = map a109449_row [0..]
-- Reinhard Zumkeller, Nov 02 2013
-
f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
[A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
-
From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
(End)
-
lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
-
A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
-
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) :
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_row(n):
x = R.gen()
return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by
Peter Luschny, Jul 10 2009
A147315
L-matrix for Euler numbers A000111(n+1).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 11, 6, 1, 16, 45, 35, 10, 1, 61, 211, 210, 85, 15, 1, 272, 1113, 1351, 700, 175, 21, 1, 1385, 6551, 9366, 5901, 1890, 322, 28, 1, 7936, 42585, 70055, 51870, 20181, 4410, 546, 36, 1, 50521, 303271, 563970, 479345, 218925, 58107, 9240, 870, 45, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 3, 1;
5, 11, 6, 1;
16, 45, 35, 10, 1;
61, 211, 210, 85, 15, 1;
272, 1113, 1351, 700, 175, 21, 1;
...
The production array for L is the tridiagonal array
1, 1;
1, 2, 1;
0, 3, 3, 1;
0, 0, 6, 4, 1;
0, 0, 0, 10, 5, 1;
0, 0, 0, 0, 15, 6, 1;
0, 0, 0, 0, 0, 21, 7, 1;
0, 0, 0, 0, 0, 0, 28, 8, 1,;
0, 0, 0, 0, 0, 0, 0, 36, 9, 1;
From _Peter Bala_, Jan 31 2011: (Start)
Examples of forests:
The diagrams below are drawn so that the leftmost child of a binary node has the maximum label.
T(4,1) = 5. The 5 forests consisting of a single non-plane increasing unary-binary tree on 4 nodes are
...4... ........ .......... ........... ...........
...|... ........ .......... ........... ...........
...3... .4...3.. .4........ ........4.. ........3..
...|... ..\./... ..\....... ......./... ......./...
...2... ...2.... ...3...2.. ..3...2.... ..4...2....
...|... ...|.... ....\./... ...\./..... ...\./.....
...1... ...1.... .....1.... ....1...... ....1......
T(4,2) = 11. The 11 forests consisting of two non-plane increasing unary-binary trees on 4 nodes are
......... ...3.....
.3...2... ...|.....
..\./.... ...2.....
...1...4. ...|.....
......... ...1...4.
.
......... ...4.....
.4...2... ...|.....
..\./.... ...2.....
...1...3. ...|.....
......... ...1...3.
.
......... ...4.....
.4...3... ...|.....
..\./.... ...3.....
...1...2. ...|.....
......... ...1...2.
.
......... ...4.....
.4...3... ...|.....
..\./.... ...3.....
...2...1. ...|.....
......... ...2...1.
.
......... ......... ..........
..2..4... ..3..4... ..4...3...
..|..|... ..|..|... ..|...|...
..1..3... ..1..2... ..1...2...
......... ......... .......... (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Tom Copeland, Mathemagical Forests
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
-
A147315 := proc(n,k) n!*exp(x*(sec(t)+tan(t)-1)) - 1: coeftayl(%,t=0,n) ; coeftayl(%,x=0,k) ; end proc:
seq(seq(A147315(n,k),k=1..n),n=0..12) ; # R. J. Mathar, Mar 04 2011
# second Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
g:= proc(n) option remember; expand(`if`(n=0, 1, add(
g(n-j)*x*binomial(n-1, j-1)*b(j, 0), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n+1))(g(n+1)):
seq(T(n), n=0..10); # Alois P. Heinz, May 19 2021
-
t[n_, k_] := t[n, k] = t[n-1, k-1] + (k+1)*t[n-1, k] + 1/2*(k+1)*(k+2)*t[n-1, k+1]; t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[0, 0] = t[1, 0] = 1; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 21 2011, after PARI prog. *)
-
Co(n,k):=sum(binomial(k,j)*(if oddp(n-k+j) then 0 else if (n-k+j)/2A147315(n,m):=1/m!*sum((if oddp(n-k) then 0 else 2^(1-k)*sum((-1)^(floor((n+k)/2)-i)*binomial(k,i)*(2*i-k)^n,i,0,floor(k/2)))*(sum(Co(i,m)*binomial(k-i+m-1,m-1),i,1,k)),k,m,n); /* Vladimir Kruchinin, Feb 17 2011 */
-
T(n,m):=(sum(binomial(k+m,m)*((-1)^(n-k-m)+1)*sum(binomial(j+k+m,k+m)*(j+k+m+1)!*2^(-j-k-1)*(-1)^((n+k+m)/2+j+k+m)*stirling2(n+1,j+k+m+1), j,0,n-k-m), k,0,n-m))/(m+1)!; /* Vladimir Kruchinin, May 17 2011 */
-
{T(n,k)=if(k<0||k>n,0,if(n==0,1,T(n-1,k-1)+(k+1)*T(n-1,k)+(k+1)*(k+2)/2*T(n-1,k+1)))} /* offset=0 */
-
{T(n,k)=local(X=x+x*O(x^(n+2)));(n+1)!*polcoeff(polcoeff(exp(y*((1+sin(X))/cos(X)-1))-1,n+1,x),k+1,y)} /* offset=0 */
-
/* Generate from the production matrix P: */
{T(n,k)=local(P=matrix(n,n,r,c,if(r==c-1,1,if(r==c,c,if(r==c+1,c*(c+1)/2)))));if(k<0||k>n,0,if(n==k,1,(P^n)[1,k+1]))}
-
# uses[bell_matrix from A264428, A000111]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A000111(n+1), 10) # Peter Luschny, Jan 18 2016
A320956
a(n) = A000110(n) * A000111(n). The exponential limit of sec + tan. Row sums of A373428.
Original entry on oeis.org
1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, 167822592, 5859172975, 240072637440, 11388362495705, 618357843791872, 38057876106154882, 2632817442236631040, 203225803724876875315, 17390464322078045896704, 1640312648221489789841119, 169667967895669459925991424
Offset: 0
Illustration of the convergence:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... A000111
[2] 1, 1, 2, 8, 40, 256, 1952, 17408, 177280, ... A000828
[3] 1, 1, 2, 10, 70, 656, 7442, 99280, 1515190, ... A320957
[4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
[5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
[6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
[7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
[8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
-
ExpLim := proc(len, f) local kernel, sf, egf:
sf := proc(n) option remember; `if`(n <= 1, 1 - n, (n-1)*(sf(n-1) + sf(n-2))) end:
kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
egf := n -> add(kernel(n, k)*f(x*(n-k)), k=0..n):
series(egf(len), x, len+2): seq(coeff(%, x, k)*k!/len!, k=0..len) end:
ExpLim(19, sec + tan);
# Alternative:
explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
explim(19, sec + tan);
# Or:
a := n -> A000110(n)*A000111(n): seq(a(n), n = 0..19); # Peter Luschny, Jun 07 2024
-
m = 20; CoefficientList[Sec[x] + Tan[x] + O[x]^m, x] * Range[0, m-1]! *
BellB[Range[0, m-1]] (* Jean-François Alcover, Jun 19 2019 *)
A132049
Numerator of 2*n*A000111(n-1)/A000111(n): approximations of Pi, using Euler (up/down) numbers.
Original entry on oeis.org
2, 4, 3, 16, 25, 192, 427, 4352, 12465, 158720, 555731, 8491008, 817115, 626311168, 2990414715, 60920233984, 329655706465, 7555152347136, 45692713833379, 232711080902656, 7777794952988025, 217865914337460224
Offset: 1
Rationals r(n): [3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
- J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
-
S := proc(n, k) option remember;
if k=0 then `if`(n=0,1,0) else S(n,k-1)+S(n-1,n-k) fi end:
R := n -> 2*n*S(n-1,n-1)/S(n,n);
A132049 := n -> numer(R(n)); A132050 := n -> denom(R(n));
seq(A132049(i),i=3..22); # Peter Luschny, Aug 04 2011
-
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)]]; r[n_] := 2*n*(e[n-1]/e[n]); a[n_] := Numerator[r[n]]; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Mar 18 2013 *)
-
from itertools import islice, count, accumulate
from fractions import Fraction
def A132049_gen(): # generator of terms
yield 2
blist = (0,1)
for n in count(2):
yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).numerator
A132049_list = list(islice(A132049_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
a(1) and a(2) prepended by
Paul Curtz, Apr 04 2013
A000708
a(n) = E(n+1) - 2*E(n), where E(i) is the Euler number A000111(i).
Original entry on oeis.org
-1, -1, 0, 1, 6, 29, 150, 841, 5166, 34649, 252750, 1995181, 16962726, 154624469, 1505035350, 15583997521, 171082318686, 1985148989489, 24279125761950, 312193418011861, 4210755676649046, 59445878286889709, 876726137720576550, 13483686390543382201
Offset: 0
G.f. = -1 - x + x^3 + 6*x^4 + 29*x^5 + 150*x^6 + 841*x^7 + 5166*x^8 + 34649*x^9 + ...
a(3) = 1 with permutation 123. a(4) = 6 with permutations 1243, 1342, 1432, 2341, 2431, 3421.
From _Petros Hadjicostas_, Aug 07 2019: (Start)
We elaborate on the example above. For the permutations of [3], we have the following sign sequences:
123 -> ++; 132 --> +-; 213 -> -+; 213 -> 213; 231 -> +-; 312 -> -+; 321 --> --.
Thus, 123 and 321 are quasi-alternate and a(3) = 2/2 = 1.
For the permutations of [4] we have:
1234 -> +++ (neither alternate nor quasi-alternate);
1243 -> ++- (quasi-alternate);
1324 -> +-+ (alternate);
1342 -> ++- (quasi-alternate);
1423 -> +-+ (alternate);
1432 -> +-- (quasi-alternate);
2134 -> -++ (quasi-alternate);
2143 -> -+- (alternate);
2314 -> +-+ (alternate);
2341 -> ++- (quasi-alternate);
2413 -> +-+ (alternate);
2431 -> +-- (quasi-alternate);
3124 -> -++ (quasi-alternate);
3142 -> -+- (alternate);
3214 -> --+ (quasi-alternate);
3241 -> -+- (alternate);
3412 -> +-+ (alternate);
3421 -> +-- (quasi-alternate);
4123 -> -++ (quasi-alternate);
4132 -> -+- (alternate);
4213 -> --+ (quasi-alternate);
4231 -> -+- (alternate);
4312 -> --+ (quasi-alternate);
4321 -> --- (neither alternate nor quasi-alternate).
Thus we have 10 = 2*A000111(4) = A001250(4) alternate permutations of [4] and 2*a(4) = 2*6 = 12 quasi-alternate permutations of [4]. The remaining 2 permutations (1234 and 4321) each have one so-called "séquence" ("alternate run").
Thus, P_{n=4, s=1} = 2, P_{n=4, s=2} = 12, and P_{n=4, s=10} = 10 (see row n = 4 for array A059427).
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 113.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..482
- Data (data.bnf.fr), Désiré André (1840-1918).
- Désiré André, Mémoire sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
- Désiré André, Étude sur les maxima, minima et séquences des permutations, Annales scientifiques de l'École Normale Supérieure, Serie 3, Vol. 1 (1884), 121-134.
- Désiré André, Mémoire sur les permutations quasi-alternées, Journal de mathématiques pures et appliquées 5e série, tome 1 (1895), 315-350.
- E. Estanave, Sur les coefficients des développements en séries de tang x, séc x et d'autres fonctions. Caractères de périodicité que présentent les chiffres des unités de ces coefficients, Bulletin de la S.M.F., 30 (1902), pp. 220-226.
- F. Morley, A generating function for the number of permutations with an assigned number of sequences, Bull. Amer. Math. Soc. 4 (1897), 23-28. [Discusses the so-called "séquences" of Désiré André. A shifted version of the current sequence appears in column r = 1 in the table on p. 24. His definition, however, of a "run" is highly not standard! The definition of the letter r in his paper is the number of triplets of adjacent numbers in the permutation that appear in order of magnitude (ascending or descending). He proves that in any permutation b of [n] we have r + s = n-1, where s is the number of the so-called "séquences" of André (i.e., number of "alternate runs"). Thus, r = 1 if and only s = n - 2. - _Petros Hadjicostas_, Aug 09 2019]
- Eugen Netto, Lehrbuch der Combinatorik, 1901, Annotated scanned copy of pages 112-113 only.
- Eugen Netto, Lehrbuch der Combinatorik, Verlag von B. G. Teubner, Leipzig, 1901 (archived copy of the whole book).
- Eric Weisstein's MathWorld, Polylogarithm.
Apart from initial terms, equals (1/2)*
A001758. A diagonal of
A008970.
-
seq(i! * coeff(series((1 + (tan(t) + sec(t))^2 - 4*(tan(t) + sec(t))) / 2, t, 35), t, i), i=0..24); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - 2 Cos[x]) / (1 - Sin[x]), {x, 0, n}]]; (* Michael Somos, Aug 28 2013 *)
nmax = 22; ee = Table[2^n*EulerE[n, 1] + EulerE[n], {n, 0, nmax+1}]; dd = Table[Differences[ee, n][[1]] // Abs, {n, 0, nmax+1}]; a[n_] := dd[[n+2]] - 2dd[[n+1]]; a[0] = -1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Feb 10 2016, after Paul Curtz *)
Table[If[n == 0, -1, 2 Abs[PolyLog[-n-1, I]] - 4 Abs[PolyLog[-n, I]]], {n, 0, 22}] (* Jean-François Alcover, Jul 01 2017 *)
-
x='x+O('x^99); Vec(serlaplace((1-2*cos(x))/(1-sin(x))))
-
from mpmath import polylog, j, mp
mp.dps=20
def a(n): return -1 if n==0 else int(2*abs(polylog(-n - 1, j)) - 4*abs(polylog(-n, j)))
print([a(n) for n in range(23)]) # Indranil Ghosh, Jul 02 2017
-
from itertools import count, islice, accumulate
def A000708_gen(): # generator of terms
yield -1
blist = (0,1)
for n in count(2):
yield -2*blist[-1]+(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]
A000708_list = list(islice(A000708_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
Corrected and extended by
T. D. Noe, Oct 25 2006
A132050
Denominator of 2*n*A000111(n-1)/A000111(n): approximations of Pi using Euler (up/down) numbers.
Original entry on oeis.org
1, 1, 1, 5, 8, 61, 136, 1385, 3968, 50521, 176896, 2702765, 260096, 199360981, 951878656, 19391512145, 104932671488, 2404879675441, 14544442556416, 74074237647505, 2475749026562048, 69348874393137901, 507711943253426176
Offset: 1
Rationals r(n): [2, 4, 3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
-
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1)*(2^(n + 1) - 1)*BernoulliB[n + 1])/(n + 1)]]; r[n_] := 2*n*(e[n - 1]/e[n]); a[n_] := Denominator[r[n]]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Mar 26 2013 *)
-
from itertools import count, islice, accumulate
from fractions import Fraction
def A132050_gen(): # generator of terms
yield 1
blist = (0,1)
for n in count(2):
yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).denominator
A132050_list = list(islice(A132050_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
Definition made more explicit, and initial terms a(1)=a(2)=1 added by
M. F. Hasler, Apr 03 2013
A185414
Square array, read by antidiagonals, used to recursively calculate the zigzag numbers A000111.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 16, 16, 10, 4, 1, 61, 61, 39, 17, 5, 1, 272, 272, 176, 80, 26, 6, 1, 1385, 1385, 903, 421, 145, 37, 7, 1, 7936, 7936, 5200, 2464, 880, 240, 50, 8, 1, 50521, 50521, 33219, 15917, 5825, 1661, 371, 65, 9, 1
Offset: 1
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...;
2, 5, 10, 17, 26, 37, 50, 65, 82, ...;
5, 16, 39, 80, 145, 240, 371, 544, 765, ...;
16, 61, 176, 421, 880, 1661, 2896, 4741, 7376, ...;
61, 272, 903, 2464, 5825, 12336, 23947, 43328, 73989, ...;
272, 1385, 5200, 15917, 41936, 98377, 210320, 416765, ...;
1385, 7936, 33219, 112640, 326965, 840960, 1962191, ...; ...
Examples of the recurrence:
T(4,4) = 80 = (3*T(3,3) + 5*T(3,5))/2 = (3*10 + 5*26)/2;
T(5,3) = 176 = (2*T(4,2) + 4*T(4,4))/2 = (2*16 + 4*80)/2;
T(6,2) = 272 = (1*T(5,1) + 3*T(5,3))/2 = (1*16 + 3*176)/2.
-
#A185414 Z := proc(n,x)
description 'zigzag polynomials A147309'
if n = 0 return 1 else return 1/2*x*(Z(n-1,x-1)+Z(n-1,x+1))
end proc:
# values of Z(n,x)/x
for n from 1 to 10 do seq(Z(n,k)/k, k = 1..10);
end do;
-
{T(n,k)=if(n==1,1,((k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1))/2)}
for(n=1,10, for(k=1,10, print1(T(n,k),", ")); print(""))
A185424
Numerators of generalized Bernoulli numbers associated with the zigzag numbers A000111.
Original entry on oeis.org
1, -1, 1, -1, 19, -5, 253, -61, 3319, -1385, 222557, -50521, 422152729, -2702765, 59833795, -199360981, 439264083023, -19391512145, 76632373664299, -2404879675441, 4432283799315809, -370371188237525
Offset: 0
Examples of von Staudt and Clausen's theorem for ZB(2*n):
ZB(2) = 1/6 = 1 - 1/2 - 1/3;
ZB(4) = 19/30 = 1 - 1/2 + 1/3 - 1/5;
ZB(6) = 253/42 = 7 - 1/2 - 1/3 - 1/7;
ZB(8) = 3319/30 = 111 - 1/2 + 1/3 - 1/5;
ZB(10) = 222557/66 = 3373 - 1/2 - 1/3 - 1/11.
Sequence of denominators is
A141056.
-
#A185424
a:= n-> numer((-1)^(n*(n-1)/2)*add(binomial(n,k)/(k+1)* bernoulli(n-k) *euler(k), k = 0..n)):
seq(a(n), n = 0..20);
-
Numerator[ Range[0, 30]! CoefficientList[ Series[Log(Sec[x]+Tan[x])/(Sec[x] +Tan[x] - 1), {x, 0, 30}], x]]
A247453
T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0
. 0: 1
. 1: -1 1
. 2: 1 -2 1
. 3: -2 3 -3 1
. 4: 5 -8 6 -4 1
. 5: -16 25 -20 10 -5 1
. 6: 61 -96 75 -40 15 -6 1
. 7: -272 427 -336 175 -70 21 -7 1
. 8: 1385 -2176 1708 -896 350 -112 28 -8 1
. 9: -7936 12465 -9792 5124 -2016 630 -168 36 -9 1
. 10: 50521 -79360 62325 -32640 12810 -4032 1050 -240 45 -10 1 .
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- OEIS Wiki, Boustrophedon transform.
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a247453 n k = a247453_tabl !! n !! k
a247453_row n = a247453_tabl !! n
a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
-
a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}];
T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
-
A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017
A024255
a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers.
Original entry on oeis.org
0, 1, 4, 48, 1088, 39680, 2122752, 156577792, 15230058496, 1888788086784, 290888851128320, 54466478584365056, 12185086638082228224, 3209979242472703787008, 983522422455215438430208, 346787762817143967622103040, 139423404114002708738732982272
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..100
- Noam D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
- Noam D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
- Luis Ferroni, Alejandro H. Morales, and Greta Panova, Skew shapes, Ehrhart positivity and beyond, arXiv:2503.16403 [math.CO], 2025. See p. 16.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
-
a := n -> (-1)^n*2^(2*n-1)*(1-2^(2*n))*bernoulli(2*n); # Peter Luschny, Jun 08 2009
-
nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*x/2, {x, 0, nn}], x]; Take[t, {1, nn, 2}]
Table[(-1)^n 2 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
-
from itertools import accumulate, islice, count
def A024255_gen(): # generator of terms
yield from (0,1)
blist = (0,1)
for n in count(2):
yield n*(blist := tuple(accumulate(reversed(tuple(accumulate(reversed(blist),initial=0))),initial=0)))[-1]
A024255_list = list(islice(A024255_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
Showing 1-10 of 349 results.
Next
Comments