A229142
Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0
A(1,3) = 3*2+1 = 7:
(0,1,1)-(0,0,1)
/ X \
(1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
\ \ X / /
\ (1,1,0)-(1,0,0) /
`---------------´
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 7, 25, 121, ...
1, 1, 13, 115, 2641, 114121, ...
1, 1, 63, 2371, 392641, 169417921, ...
1, 1, 321, 54091, 67982041, 308238414121, ...
1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
Columns k=0+1, 2-10 give:
A000012,
A001850,
A081798,
A082488,
A082489,
A229049,
A229674,
A229675,
A229676,
A229677.
-
with(combinat):
A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A081798
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k).
Original entry on oeis.org
1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797, 15953338537885, 434479441772845, 11927609772412075, 329653844941016785, 9163407745486783435, 255982736410338609931, 7181987671728091545787
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- E. W. Weisstein, in MathWorld: Multinomial Coefficient.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
w := proc(i,j,k) option remember; if i=0 and j=0 and k = 0 then 1; elif i<0 or j<0 or k<0 then 0 else w(i-1,j,k)+w(i,j-1,k)+w(i,j,k-1)+w(i-1,j-1,k-1); end: end: for k from 0 to 10 do lprint(w(k,k,k)):end: # Theodore Kolokolnikov, Jul 04 2010
# second Maple program:
a:= proc(n) option remember; `if`(n<3, 51*n^2-45*n+1,
((3*n-2)*(30*n^2-50*n+13)*a(n-1)+(3*n-1)*(n-2)^2*a(n-3)
-(9*n^3-30*n^2+29*n-6)*a(n-2))/(n^2*(3*n-4)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 22 2013
-
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k] Binomial[n + 2k, k], {k, 0, n}]; Array[f, 17, 0] (* Robert G. Wilson v *)
CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3}, {1}, 27*x/(1 - x)^3]/(1 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 07 2016 *)
-
makelist(sum(binomial(n,k)*binomial(n+k,k)*binomial(n+2*k,k),k,0,n),n,0,12);
-
{a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^m/(1-x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Sep 22 2013
-
a(n) = sum(k = 0, n, binomial(n, k) * binomial(n+k, k) * binomial(n+2*k, k)); \\ Michel Marcus, Jan 14 2016
Showing 1-2 of 2 results.
Comments