cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020

A081798 a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k).

Original entry on oeis.org

1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797, 15953338537885, 434479441772845, 11927609772412075, 329653844941016785, 9163407745486783435, 255982736410338609931, 7181987671728091545787
Offset: 0

Views

Author

Emanuele Munarini, Apr 23 2003

Keywords

Comments

a(n) is also a generalization of Delannoy numbers to 3D; i.e. the number of walks from (0,0,0) to (n,n,n) in a 3D square lattice where each step is in the direction of one of (1,0,0), (0,1,0), (0,0,1) and (1,1,1). - Theodore Kolokolnikov, Jul 04 2010
Diagonal of the rational function 1/(1 - x - y - z - x*y*z). - Gheorghe Coserea, Jul 06 2016

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Maple
    w := proc(i,j,k) option remember; if i=0 and j=0 and k = 0 then 1; elif i<0 or j<0 or k<0 then 0 else w(i-1,j,k)+w(i,j-1,k)+w(i,j,k-1)+w(i-1,j-1,k-1); end: end: for k from 0 to 10 do lprint(w(k,k,k)):end: # Theodore Kolokolnikov, Jul 04 2010
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, 51*n^2-45*n+1,
         ((3*n-2)*(30*n^2-50*n+13)*a(n-1)+(3*n-1)*(n-2)^2*a(n-3)
         -(9*n^3-30*n^2+29*n-6)*a(n-2))/(n^2*(3*n-4)))
        end:
    seq(a(n), n=0..20); # Alois P. Heinz, Sep 22 2013
  • Mathematica
    f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k] Binomial[n + 2k, k], {k, 0, n}]; Array[f, 17, 0] (* Robert G. Wilson v *)
    CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3}, {1}, 27*x/(1 - x)^3]/(1 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 07 2016 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(n+k,k)*binomial(n+2*k,k),k,0,n),n,0,12);
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^m/(1-x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Sep 22 2013
    
  • PARI
    a(n) = sum(k = 0, n, binomial(n, k) * binomial(n+k, k) * binomial(n+2*k, k)); \\ Michel Marcus, Jan 14 2016

Formula

a(n) = w(n,n,n) where w(i,j,k)=w(i-1,j,k)+w(i,j-1,k)+w(i,j,k-1)+w(i-1,j-1,k-1) and where w(0,0,0)=1 and w(i,j,k)=0 if one of i,j,k is strictly negative. - Theodore Kolokolnikov, Jul 04 2010
G.f.: hypergeom([1/3, 2/3],[1],27*x/(1-x)^3)/(1-x). - Mark van Hoeij, Oct 24 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^n / (1-x)^(3*n+1). - Paul D. Hanna, Sep 22 2013
a(n) ~ c*d^n/(Pi*n), where d = (3*(292 + 4*sqrt(5))^(2/3) + 132 + 20*(292 + 4*sqrt(5))^(1/3)) / (2*(292 + 4*sqrt(5))^(1/3)) = 29.900786688498085... is the root of the equation -1 + 3*d - 30*d^2 + d^3 = 0 and c = 1/(2*sqrt(((81 - 27*sqrt(5))/2)^(1/3) + 3*((3 + sqrt(5))/2)^(1/3) - 6)) = 0.8959908650405192232... is the root of the equation -1 - 72*c^2 - 1296*c^4 + 1728*c^6 = 0. - Vaclav Kotesovec, Sep 23 2013, updated Jul 07 2016
From Peter Bala, Jan 13 2016: (Start)
a(n) = Sum_{k = 0..n} multinomial(n + 2*k, k, k, k, n - k). Cf. A001850(n) = Sum_{k = 0..n} multinomial(n + k, k, k, n - k).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 42*x^3 + 639*x^4 + 11571*x^5 + ... appears to have integer coefficients. (End)
Conjecture: n^2*(3*n-4)*a(n) -(3*n-2)*(30*n^2-50*n+13)*a(n-1) +(9*n^3-30*n^2+29*n-6)*a(n-2) -(3*n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Apr 15 2016
Conjecture: (n^2)*a(n) +(-28*n^2+24*n-3)*a(n-1) +3*(-19*n^2+78*n-77)*a(n-2) +(5*n-12)*(n-3)*a(n-3) -2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Apr 15 2016
0 = (2*x+1)*(x^3-3*x^2+30*x-1)*x*y'' + (6*x^4-8*x^3+51*x^2+60*x-1)*y' + (x-1)*(2*x^2+2*x-7)*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
Showing 1-2 of 2 results.