A082487 Duplicate of A081798.
1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 56*x^3 + 346*x^4 + 2252*x^5 + ... O.g.f.: A(x) = 1/(1-2*x) + 3!*x^2/(1-2*x)^4 + (6!/2!^3)*x^4/(1-2*x)^7 + (9!/3!^3)*x^6/(1-2*x)^10 + (12!/4!^3)*x^8/(1-2*x)^13 + ... - _Paul D. Hanna_, Oct 30 2010 Let g.f. A(x) = Sum_{n >= 0} a(n)*x^n/n!^3, then A(x) = 1 + 2*x + 10*x^2/2!^3 + 56*x^3/3!^3 + 346*x^4/4!^3 + ... where A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 + ...]^2. - _Paul D. Hanna_
a000172 = sum . map a000578 . a007318_row -- Reinhard Zumkeller, Jan 06 2013
A000172 := proc(n) add(binomial(n,k)^3,k=0..n) ; end proc: seq(A000172(n),n=0..10) ; # R. J. Mathar, Jul 26 2014 A000172_list := proc(len) series(hypergeom([], [1, 1], x)^2, x, len); seq((n!)^3*coeff(%, x, n), n=0..len-1) end: A000172_list(21); # Peter Luschny, May 31 2017
Table[Sum[Binomial[n,k]^3,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Aug 24 2011 *) Table[ HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1], {n, 0, 20}] (* Jean-François Alcover, Jul 16 2012, after symbolic sum *) a[n_] := Sum[ Binomial[2k, n]*Binomial[2k, k]*Binomial[2(n-k), n-k], {k, 0, n}]/2^n; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 20 2013, after Zhi-Wei Sun *) a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/3, 2/3, 1, 27 x^2 / (1 - 2 x)^3] / (1 - 2 x), {x, 0, n}]; (* Michael Somos, Jul 16 2014 *)
{a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)/(1-2*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Oct 30 2010
{a(n)=n!^3*polcoeff(sum(m=0,n,x^m/m!^3+x*O(x^n))^2,n)} \\ Paul D. Hanna, Jan 19 2011
A000172(n)={sum(k=0,(n-1)\2,binomial(n,k)^3)*2+if(!bittest(n,0),binomial(n,n\2)^3)} \\ M. F. Hasler, Sep 21 2015
def A000172(): x, y, n = 1, 2, 1 while True: yield x n += 1 x, y = y, (8*(n-1)^2*x + (7*n^2-7*n + 2)*y) // n^2 a = A000172() [next(a) for i in range(21)] # Peter Luschny, Oct 12 2013
A(1,3) = 3*2+1 = 7: (0,1,1)-(0,0,1) / X \ (1,1,1)-(1,0,1) (0,1,0)-(0,0,0) \ \ X / / \ (1,1,0)-(1,0,0) / `---------------´ Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 7, 25, 121, ... 1, 1, 13, 115, 2641, 114121, ... 1, 1, 63, 2371, 392641, 169417921, ... 1, 1, 321, 54091, 67982041, 308238414121, ... 1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
with(combinat): A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)): seq(seq(A(n, d-n), n=0..d), d=0..10);
a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
G.f.: A(x) = 1 + 25*x + 2641*x^2 + 392641*x^3 + 67982041*x^4 + 12838867105*x^5 +... where A(x) = 1/(1-x) + (4!/1!^4)*x/(1-x)^5 + (8!/2!^4)*x^2/(1-x)^9 + (12!/3!^4)*x^3/(1-x)^13 + (16!/4!^4)*x^4/(1-x)^17 + (20!/5!^4)*x^5/(1-x)^21 +... [Hanna] Equivalently, A(x) = 1/(1-x) + 24*x/(1-x)^5 + 2520*x^2/(1-x)^9 + 369600*x^3/(1-x)^13 + 63063000*x^4/(1-x)^17 + 11732745024*x^5/(1-x)^21 +...+ A008977(n)*x^n/(1-x)^(4*n+1) +...
[&+[Binomial(n, k)*Binomial(n+k, k)*Binomial(n+2*k, k)*Binomial(n+3*k, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Oct 16 2018
with(combinat): a:= n-> add(multinomial(n+3*k, n-k, k$4), k=0..n): seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
{a(n)=polcoeff(sum(m=0, n, (4*m)!/m!^4*x^m/(1-x+x*O(x^n))^(4*m+1)), n)} for(n=0, 15, print1(a(n), ", "))
{a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k)*binomial(n+3*k, k))} for(n=0, 15, print1(a(n), ", "))
G.f.: A(x) = 1 + 121*x + 114121*x^2 + 169417921*x^3 + 308238414121*x^4 +... where A(x) = 1/(1-x) + (5!/1!^5)*x/(1-x)^6 + (10!/2!^5)*x^2/(1-x)^11 + (15!/3!^5)*x^3/(1-x)^16 + (20!/4!^5)*x^4/(1-x)^21 + (25!/5!^5)*x^5/(1-x)^26 +... [Hanna] Equivalently, A(x) = 1/(1-x) + 120*x/(1-x)^6 + 113400*x^2/(1-x)^11 + 168168000*x^3/(1-x)^16 + 305540235000*x^4/(1-x)^21 + 623360743125120*x^5/(1-x)^26 +...+ A008978(n)*x^n/(1-x)^(5*n+1) +...
with(combinat): a:= n-> add(multinomial(n+4*k, n-k, k$5), k=0..n): seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k]*Binomial[n+4*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
{a(n)=polcoeff(sum(m=0, n, (5*m)!/m!^5*x^m/(1-x+x*O(x^n))^(5*m+1)), n)} for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013
{a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k) *binomial(n+3*k, k)*binomial(n+4*k, k))} for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013
G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +... where A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23); # Mark van Hoeij, May 20 2013 a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23); # Peter Luschny, Jan 11 2025
nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)} for(n=0,25,print1(a(n),", "))
G.f.: A(x) = 1 + 721*x + 7489441*x^2 + 137322405361*x^3 + 3249278494922881*x^4 +... where A(x) = 1/(1-x) + (6!/1!^6)*x/(1-x)^7 + (12!/2!^6)*x^2/(1-x)^13 + (18!/3!^6)*x^3/(1-x)^19 + (24!/4!^6)*x^4/(1-x)^25 + (30!/5!^6)*x^5/(1-x)^31 +... Equivalently, A(x) = 1/(1-x) + 720*x/(1-x)^7 + 7484400*x^2/(1-x)^13 + 137225088000*x^3/(1-x)^19 + 3246670537110000*x^4/(1-x)^25 + 88832646059788350720*x^5/(1-x)^31 +...+ A008979(n)*x^n/(1-x)^(6*n+1) +...
with(combinat): a:= n-> add(multinomial(n+5*k, n-k, k$6), k=0..n): seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k] *Binomial[n+3*k,k] *Binomial[n+4*k,k]*Binomial[n+5*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
{a(n)=polcoeff(sum(m=0, n, (6*m)!/m!^6*x^m/(1-x+x*O(x^n))^(6*m+1)), n)} for(n=0,15,print1(a(n),", "))
{a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k) *binomial(n+2*k,k) *binomial(n+3*k,k) *binomial(n+4*k,k)*binomial(n+5*k,k))} for(n=0,15,print1(a(n),", "))
G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +... where A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +... Equivalently, A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +... Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms: a(0) = 1; a(1) = 1 + C(1,1); a(2) = 1 + C(2,1) + C(2,2)*C(4,2); a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3); a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4); a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ... which numerically equals: a(0) = 1; a(1) = 1 + 1 = 2; a(2) = 1 + 2 + 1*6 = 9; a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714; a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895; a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
with(combinat): a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n): seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
Table[Sum[Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)} for(n=0,15,print1(a(n),", "))
{a(n)=sum(k=0,n,prod(j=0,k-1,binomial(n+j*k,k)))} for(n=0,15,print1(a(n),", "))
A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [0] 1; [1] 6, 1; [2] 90, 24, 1; [3] 1680, 630, 60, 1; [4] 34650, 16800, 2520, 120, 1; [5] 756756, 450450, 92400, 7560, 210, 1; [6] 17153136, 12108096, 3153150, 369600, 18900, 336, 1; [7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1; [8] ...
T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!); concat(vector(10, n, vector(n, k, T(n-1, k-1)))) /* test: P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v); diag(expr, N=22, var=variables(expr)) = { my(a = vector(N)); for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N)); for (n = 1, N, a[n] = expr; for (k = 1, #var, a[n] = polcoef(a[n], n-1))); return(a); }; apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s s=intformal(s); sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s); }; \\ diagonal property: x='x; y='y; z='z; t='t; diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x,y,z]) == vector(11, n, P(n-1)) \\ annihilating diffop: y = Ser(vector(101, n, P(n-1)), 'x); p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6); 0 == apply_diffop(p, y) */
G.f.: A(x) = 1 + 3*x + 29*x^2 + 13567*x^3 + 1009142769*x^4 +... where A(x) = 1/(1-x) + (2*x)/(1-x)^2 + (4!/2!^2)*(2*x)^2/(1-x)^5 + (9!/3!^3)*(2*x)^3/(1-x)^10 + (16!/4!^4)*(2*x)^4/(1-x)^17 + (25!/5!^5)*(2*x)^5/(1-x)^26 +... Equivalently, A(x) = 1/(1-x) + (2*x)/(1-x)^2 + 6*(2*x)^2/(1-x)^5 + 1680*(2*x)^3/(1-x)^10 + 63063000*(2*x)^4/(1-x)^17 + 623360743125120*(2*x)^5/(1-x)^26 +...+ A034841(n)*(2*x)^n/(1-x)^(n^2+1) +... Illustrate formula a(n) = Sum_{k=0..n} 2^k * Product_{j=0..k-1} C(n+j*k,k) for initial terms: a(0) = 1; a(1) = 1 + 2*C(1,1); a(2) = 1 + 2*C(2,1) + 4*C(2,2)*C(4,2); a(3) = 1 + 2*C(3,1) + 4*C(3,2)*C(5,2) + 8*C(3,3)*C(6,3)*C(9,3); a(4) = 1 + 2*C(4,1) + 4*C(4,2)*C(6,2) + 8*C(4,3)*C(7,3)*C(10,3) + 16*C(4,4)*C(8,4)*C(12,4)*C(16,4); a(5) = 1 + 2*C(5,1) + 4*C(5,2)*C(7,2) + 8*C(5,3)*C(8,3)*C(11,3) + 16*C(5,4)*C(9,4)*C(13,4)*C(17,4) + 32*C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ... which numerically equals: a(0) = 1; a(1) = 1 + 2*1 = 3; a(2) = 1 + 2*2 + 4*1*6 = 29; a(3) = 1 + 2*3 + 4*3*10 + 8*1*20*84 = 13567; a(4) = 1 + 2*4 + 4*6*15 + 8*4*35*120 + 16*1*70*495*1820 = 1009142769; a(5) = 1 + 2*5 + 4*10*21 + 8*10*56*165 + 16*5*126*715*2380 + 32*1*252*3003*15504*53130 = 19947560933879891; ...
with(combinat): a:= n-> add(2^k*multinomial(n+(k-1)*k, n-k, k$k), k=0..n): seq(a(n), n=0..10); # Alois P. Heinz, Sep 23 2013
Table[Sum[2^k*Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*(2*x)^m/(1-x+x*O(x^n))^(m^2+1)), n)} for(n=0,15,print1(a(n),", "))
{a(n)=sum(k=0,n,2^k*prod(j=0,k-1,binomial(n+j*k,k)))} for(n=0,15,print1(a(n),", "))
Comments