cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A082487 Duplicate of A081798.

Original entry on oeis.org

1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797
Offset: 0

Views

Author

Keywords

A000172 The Franel number a(n) = Sum_{k = 0..n} binomial(n,k)^3.

Original entry on oeis.org

1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, 38165260, 278415920, 2046924400, 15148345760, 112738423360, 843126957056, 6332299624282, 47737325577620, 361077477684436, 2739270870994736, 20836827035351596, 158883473753259752, 1214171997616258240
Offset: 0

Views

Author

Keywords

Comments

Cusick gives a general method of deriving recurrences for the r-th order Franel numbers (this is the sequence of third-order Franel numbers), with floor((r+3)/2) terms.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
An identity of V. Strehl states that a(n) = Sum_{k = 0..n} C(n,k)^2 * binomial(2*k,n). Zhi-Wei Sun conjectured that for every n = 2,3,... the polynomial f_n(x) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(2*k,n) * x^(n-k) is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Conjecture: a(n) == 2 (mod n^3) iff n is prime. - Gary Detlefs, Mar 22 2013
a(p) == 2 (mod p^3) for any prime p since p | C(p,k) for all k = 1,...,p-1. - Zhi-Wei Sun, Aug 14 2013
a(n) is the maximal number of totally mixed Nash equilibria in games of 3 players, each with n+1 pure options. - Raimundas Vidunas, Jan 22 2014
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 2*x*y*z), 1/(1 - x - y - z + 4*x*y*z), 1/(1 + y + z + x*y + y*z + x*z + 2*x*y*z), 1/(1 + x + y + z + 2*(x*y + y*z + x*z) + 4*x*y*z). - Gheorghe Coserea, Jul 04 2018
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - x*y*z). - Seiichi Manyama, Jul 11 2020
Named after the Swiss mathematician Jérôme Franel (1859-1939). - Amiram Eldar, Jun 15 2021
It appears that a(n) is equal to the coefficient of (x*y*z)^n in the expansion of (1 + x + y - z)^n * (1 + x - y + z)^n * (1 - x + y + z)^n. Cf. A036917. - Peter Bala, Sep 20 2021

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 56*x^3 + 346*x^4 + 2252*x^5 + ...
O.g.f.: A(x) = 1/(1-2*x) + 3!*x^2/(1-2*x)^4 + (6!/2!^3)*x^4/(1-2*x)^7 + (9!/3!^3)*x^6/(1-2*x)^10 + (12!/4!^3)*x^8/(1-2*x)^13 + ... - _Paul D. Hanna_, Oct 30 2010
Let g.f. A(x) = Sum_{n >= 0} a(n)*x^n/n!^3, then
A(x) = 1 + 2*x + 10*x^2/2!^3 + 56*x^3/3!^3 + 346*x^4/4!^3 + ... where
A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 + ...]^2. - _Paul D. Hanna_
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • Jérôme Franel, On a question of Laisant, Intermédiaire des Mathématiciens, vol 1 1894 pp 45-47
  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 56.
  • Murray Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 148-149.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002893, A052144, A005260, A096191, A033581, A189791. Second row of array A094424.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Column k=3 of A372307.

Programs

  • Haskell
    a000172 = sum . map a000578 . a007318_row
    -- Reinhard Zumkeller, Jan 06 2013
    
  • Maple
    A000172 := proc(n)
        add(binomial(n,k)^3,k=0..n) ;
    end proc:
    seq(A000172(n),n=0..10) ; # R. J. Mathar, Jul 26 2014
    A000172_list := proc(len) series(hypergeom([], [1, 1], x)^2, x, len);
    seq((n!)^3*coeff(%, x, n), n=0..len-1) end:
    A000172_list(21); # Peter Luschny, May 31 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^3,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Aug 24 2011 *)
    Table[ HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1], {n, 0, 20}]  (* Jean-François Alcover, Jul 16 2012, after symbolic sum *)
    a[n_] := Sum[ Binomial[2k, n]*Binomial[2k, k]*Binomial[2(n-k), n-k], {k, 0, n}]/2^n; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 20 2013, after Zhi-Wei Sun *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/3, 2/3, 1, 27 x^2 / (1 - 2 x)^3] / (1 - 2 x), {x, 0, n}]; (* Michael Somos, Jul 16 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)/(1-2*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Oct 30 2010
    
  • PARI
    {a(n)=n!^3*polcoeff(sum(m=0,n,x^m/m!^3+x*O(x^n))^2,n)} \\ Paul D. Hanna, Jan 19 2011
    
  • PARI
    A000172(n)={sum(k=0,(n-1)\2,binomial(n,k)^3)*2+if(!bittest(n,0),binomial(n,n\2)^3)} \\ M. F. Hasler, Sep 21 2015
    
  • Sage
    def A000172():
        x, y, n = 1, 2, 1
        while True:
            yield x
            n += 1
            x, y = y, (8*(n-1)^2*x + (7*n^2-7*n + 2)*y) // n^2
    a = A000172()
    [next(a) for i in range(21)]   # Peter Luschny, Oct 12 2013

Formula

A002893(n) = Sum_{m = 0..n} binomial(n, m)*a(m) [Barrucand].
Sum_{k = 0..n} C(n, k)^3 = (-1)^n*Integral_{x = 0..infinity} L_k(x)^3 exp(-x) dx. - from Askey's book, p. 43.
D-finite with recurrence (n + 1)^2*a(n+1) = (7*n^2 + 7*n + 2)*a(n) + 8*n^2*a(n-1) [Franel]. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 31 2001
a(n) ~ 2*3^(-1/2)*Pi^-1*n^-1*2^(3*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
O.g.f.: A(x) = Sum_{n >= 0} (3*n)!/n!^3 * x^(2*n)/(1 - 2*x)^(3*n+1). - Paul D. Hanna, Oct 30 2010
G.f.: hypergeom([1/3, 2/3], [1], 27 x^2 / (1 - 2x)^3) / (1 - 2x). - Michael Somos, Dec 17 2010
G.f.: Sum_{n >= 0} a(n)*x^n/n!^3 = [ Sum_{n >= 0} x^n/n!^3 ]^2. - Paul D. Hanna, Jan 19 2011
G.f.: A(x) = 1/(1-2*x)*(1+6*(x^2)/(G(0)-6*x^2)),
with G(k) = 3*(x^2)*(3*k+1)*(3*k+2) + ((1-2*x)^3)*((k+1)^2) - 3*(x^2)*((1-2*x)^3)*((k+1)^2)*(3*k+4)*(3*k+5)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
In 2011 Zhi-Wei Sun found the formula Sum_{k = 0..n} C(2*k,n)*C(2*k,k)*C(2*(n-k),n-k) = (2^n)*a(n) and proved it via the Zeilberger algorithm. - Zhi-Wei Sun, Mar 20 2013
0 = a(n)*(a(n+1)*(-2048*a(n+2) - 3392*a(n+3) + 768*a(n+4)) + a(n+2)*(-1280*a(n+2) - 2912*a(n+3) + 744*a(n+4)) + a(n+3)*(+288*a(n+3) - 96*a(n+4))) + a(n+1)*(a(n+1)*(-704*a(n+2) - 1232*a(n+3) + 288*a(n+4)) + a(n+2)*(-560*a(n+2) - 1372*a(n+3) + 364*a(n+4)) + a(n+3)*(+154*a(n+3) - 53*a(n+4))) + a(n+2)*(a(n+2)*(+24*a(n+2) + 70*a(n+3) - 20*a(n+4)) + a(n+3)*(-11*a(n+3) + 4*a(n+4))) for all n in Z. - Michael Somos, Jul 16 2014
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^3*C(n,k)^3 = C(n,r)^3*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^2. - Peter Luschny, May 31 2017
From Gheorghe Coserea, Jul 04 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 2^(n-2*k).
G.f. y=A(x) satisfies: 0 = x*(x + 1)*(8*x - 1)*y'' + (24*x^2 + 14*x - 1)*y' + 2*(4*x + 1)*y. (End)
a(n) = [x^n] (1 - x^2)^n*P(n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 56. - Peter Bala, Mar 24 2022
a(n) = (2^n/(4*Pi^2)) * Integral_{x,y=0..2*Pi} (1+cos(x)+cos(y)+cos(x+y))^n dx dy = (8^n/(Pi^2)) * Integral_{x,y=0..Pi} (cos(x)*cos(y)*cos(x+y))^n dx dy (Pla, 1995). - Amiram Eldar, Jul 16 2022
a(n) = Sum_{k = 0..n} m^(n-k)*binomial(n,k)*binomial(n+2*k,n)*binomial(2*k,k) at m = -4. Cf. A081798 (m = 1), A006480 (m = 0), A124435 (m = -1), A318109 (m = -2) and A318108 (m = -3). - Peter Bala, Mar 16 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=2*(1 + 4*x)*T(x) + (-1 + 14*x + 24*x^2)*T'(x) + x*(1 + x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (4/243)*(1 - 8*x + 240*x^2 - 464*x^3 + 16*x^4);
g3 = -(8/19683)*(1 - 12*x - 480*x^2 + 3080*x^3 - 12072*x^4 + 4128*x^5 +
64*x^6);
which determine an elliptic surface with four singular fibers. (End)
From Peter Bala, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). Cf. A361716.
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n + 1], [1, 1], -1). (End)

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020

A082488 a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k).

Original entry on oeis.org

1, 25, 2641, 392641, 67982041, 12838867105, 2564949195985, 533008982952625, 114035552691160585, 24950692835328410305, 5557138347370070346601, 1255741805437716400557625, 287180884347761929741524361, 66343186345544102086872515761
Offset: 0

Views

Author

Emanuele Munarini, Apr 28 2003

Keywords

Comments

Diagonal of the rational function 1/(1-(x + y + z + w + x*y*z*w)). - Gheorghe Coserea, Jul 15 2016

Examples

			G.f.: A(x) = 1 + 25*x + 2641*x^2 + 392641*x^3 + 67982041*x^4 + 12838867105*x^5 +...
where
A(x) = 1/(1-x) + (4!/1!^4)*x/(1-x)^5 + (8!/2!^4)*x^2/(1-x)^9 + (12!/3!^4)*x^3/(1-x)^13 + (16!/4!^4)*x^4/(1-x)^17 + (20!/5!^4)*x^5/(1-x)^21 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 24*x/(1-x)^5 + 2520*x^2/(1-x)^9 + 369600*x^3/(1-x)^13 + 63063000*x^4/(1-x)^17 + 11732745024*x^5/(1-x)^21 +...+ A008977(n)*x^n/(1-x)^(4*n+1) +...
		

Crossrefs

Cf. A081798.
Column k = 4 of A229142.
Related to diagonal of rational functions: A268545-A268555.

Programs

  • End
    
    				
  • Magma
    [&+[Binomial(n, k)*Binomial(n+k, k)*Binomial(n+2*k, k)*Binomial(n+3*k, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Oct 16 2018
  • Maple
    with(combinat):
    a:= n-> add(multinomial(n+3*k, n-k, k$4), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (4*m)!/m!^4*x^m/(1-x+x*O(x^n))^(4*m+1)), n)}
    for(n=0, 15, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k)*binomial(n+3*k, k))}
    for(n=0, 15, print1(a(n), ", "))
    

Formula

G.f.: Sum_{n>=0} (4*n)!/n!^4 * x^n / (1-x)^(4*n+1). - Paul D. Hanna, Sep 22 2013
Recurrence: n^3*(2*n-3)*(4*n-9)*(4*n-5)*a(n) = (4*n-9)*(4*n-3)*(520*n^4 - 1820*n^3 + 2109*n^2 - 905*n + 121)*a(n-1) - (192*n^6 - 1536*n^5 + 4748*n^4 - 7050*n^3 + 5065*n^2 - 1563*n + 171)*a(n-2) + (4*n-1)*(32*n^5 - 296*n^4 + 1040*n^3 - 1689*n^2 + 1209*n - 279)*a(n-3) - (n-3)^3*(2*n-1)*(4*n-5)*(4*n-1)*a(n-4). - Vaclav Kotesovec, Sep 23 2013
a(n) ~ c*d^n/(Pi^(3/2)*n^(3/2)), where d = 65 + 46*sqrt(2) + 2*sqrt(2*(1055 + 746*sqrt(2))) = 259.976980158726979... is the maximal positive root of the equation 1 - 4*d + 6*d^2 - 260*d^3 + d^4 = 0 and c = sqrt(8 + 5*sqrt(2) + sqrt(14*(11 + 8*sqrt(2))))/8 = 0.71529801573844067904424114047445568721... - Vaclav Kotesovec, Sep 23 2013, updated Jul 16 2016
G.f.: hypergeom([1/8, 3/8],[1],256*x/(1-x)^4)^2/(1-x). - Mark van Hoeij, Sep 23 2013
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 13*x^2 + 893*x^3 + 99125*x^4 + 13706093*x^5 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016
0 = x^2*(3*x+1)^2*(1-260*x+6*x^2-4*x^3+x^4)*y''' + 3*x*(3*x+1)*(1-390*x-378*x^2+8*x^3-15*x^4+6*x^5)*y'' + (1-836*x+133*x^2+768*x^3-69*x^4-60*x^5+63*x^6)*y' + (-25+397*x-378*x^2-6*x^3+3*x^4+9*x^5)*y, where y is the g.f. - Gheorghe Coserea, Jul 15 2016

A082489 a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k) * C(n+4*k,k).

Original entry on oeis.org

1, 121, 114121, 169417921, 308238414121, 629799991355641, 1387152264043496161, 3220175519103433952161, 7771784978946238318454761, 19326687177288750280293146161, 49215884415076728067274047737961, 127771596843320597524806463425540481
Offset: 0

Views

Author

Emanuele Munarini, Apr 28 2003

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - z - u - v - x*y*z*u*v). - Ilya Gutkovskiy, Apr 22 2025

Examples

			G.f.: A(x) = 1 + 121*x + 114121*x^2 + 169417921*x^3 + 308238414121*x^4 +...
where
A(x) = 1/(1-x) + (5!/1!^5)*x/(1-x)^6 + (10!/2!^5)*x^2/(1-x)^11 + (15!/3!^5)*x^3/(1-x)^16 + (20!/4!^5)*x^4/(1-x)^21 + (25!/5!^5)*x^5/(1-x)^26 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 120*x/(1-x)^6 + 113400*x^2/(1-x)^11 + 168168000*x^3/(1-x)^16 + 305540235000*x^4/(1-x)^21 + 623360743125120*x^5/(1-x)^26 +...+ A008978(n)*x^n/(1-x)^(5*n+1) +...
		

Crossrefs

Column k = 5 of A229142.

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n+4*k, n-k, k$5), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k]*Binomial[n+4*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (5*m)!/m!^5*x^m/(1-x+x*O(x^n))^(5*m+1)), n)}
    for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k) *binomial(n+3*k, k)*binomial(n+4*k, k))}
    for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013

Formula

G.f.: Sum_{n>=0} (5*n)!/n!^5 * x^n / (1-x)^(5*n+1). - Paul D. Hanna, Sep 22 2013
Recurrence: n^4*(5*n-16)*(5*n-12)*(5*n-11)*(5*n-8)*(5*n-7)*(5*n-6)*a(n) = (5*n-16)*(5*n-12)*(5*n-11)*(5*n-4)*(78250*n^6 - 422550*n^5 + 885665*n^4 - 906704*n^3 + 468906*n^2 - 114379*n + 10086)*a(n-1) - (5*n-16)*(31250*n^9 - 400000*n^8 + 2154375*n^7 - 6337750*n^6 + 11073100*n^5 - 11721380*n^4 + 7379043*n^3 - 2629646*n^2 + 489456*n - 36000)*a(n-2) + (5*n-1)*(31250*n^9 - 556250*n^8 + 4241875*n^7 - 18056500*n^6 + 46858025*n^5 - 76033760*n^4 + 76116292*n^3 - 44628880*n^2 + 13702848*n - 1693440)*a(n-3) - (5*n-6)*(5*n-2)*(5*n-1)*(625*n^7 - 11375*n^6 + 86025*n^5 - 347305*n^4 + 798274*n^3 - 1025292*n^2 + 661408*n - 156480)*a(n-4) + (n-4)^4*(5*n-11)*(5*n-7)*(5*n-6)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-5). - Vaclav Kotesovec, Sep 23 2013
a(n) ~ c*d^n/n^2, where d = 3129.996806129131084... is the root of the equation -1 + 5*d - 10*d^2 + 10*d^3 - 3130*d^4 +d^5 = 0 and c = 0.05674890286773483081841276583916042181... - Vaclav Kotesovec, Sep 23 2013
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 61*x^2 + 38101*x^3 + 42394381*x^4 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016

A208425 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).

Original entry on oeis.org

1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
From Zhi-Wei Sun, Nov 12 2016: (Start)
Conjecture: (i) For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
(ii) For any prime p == 1 (mod 3), we have Sum_{k=0..p-1}a(k) == C(2(p-1)/3,(p-1)/3) (mod p^2). For any prime p == 2 (mod 3), we have Sum_{k=0..p-1}a(k) == 2p/C(2(p+1)/3,(p+1)/3) (mod p^2).
We have proved part (i) of this conjecture for n = 1. (End)
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - x*y*z), 1/(1 - x*y + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Number of paths from (0,0,0) to (n,n,n) using steps (1,1,0), (1,0,1), (0,1,1), and (1,1,1). - William J. Wang, Dec 07 2020
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + x*y*z)). - Seiichi Manyama, Jul 04 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
		

Crossrefs

Programs

  • Maple
    series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23);  # Mark van Hoeij, May 20 2013
    a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23);  # Peter Luschny, Jan 11 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

Conjecture: n^2*(3*n-5)*a(n) +(-9*n^3+24*n^2-17*n+4) *a(n-1) -(3*n-4) *(24*n^2-56*n+27)*a(n-2) -(3*n-2)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(1/2 + sqrt(13)*cos(arctan(53*sqrt(3)/19)/3)/6) * (1 + 6*cos(Pi/9))^n / (Pi*n). - Vaclav Kotesovec, Jul 05 2016
It is easy to show that a(n) = Sum_{k=0..n}C(n,k)*C(n-k,k)*C(n+k,k) = Sum_{k=0..n}C(n+k,k)*C(n,2k)*C(2k,k). By this formula and the Zeilberger algorithm, we confirm the recurrence conjectured by R. J. Mathar. - Zhi-Wei Sun, Nov 12 2016
G.f. y=A(x) satisfies: 0 = x*(x + 2)*(x^3 + 24*x^2 + 3*x - 1)*y'' + (3*x^4 + 56*x^3 + 147*x^2 + 12*x - 2)*y' + (x^3 + 9*x^2 + 42*x + 2)*y. - Gheorghe Coserea, Jul 03 2018
a(n) = hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4). - Peter Luschny, Jan 11 2025

A229049 G.f.: Sum_{n >= 0} (6*n)!/n!^6 * x^n / (1-x)^(6*n+1).

Original entry on oeis.org

1, 721, 7489441, 137322405361, 3249278494922881, 88913838899388373921, 2672932604015450235911761, 85821373873727899097881489201, 2892941442791065880984595547275841, 101239016762863657789924022384195015281, 3649717311362112161867915447690005522733041
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2013

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - z - u - v - w - x*y*z*u*v*w). - Ilya Gutkovskiy, Apr 22 2025

Examples

			G.f.: A(x) = 1 + 721*x + 7489441*x^2 + 137322405361*x^3 + 3249278494922881*x^4 +...
where
A(x) = 1/(1-x) + (6!/1!^6)*x/(1-x)^7 + (12!/2!^6)*x^2/(1-x)^13 + (18!/3!^6)*x^3/(1-x)^19 + (24!/4!^6)*x^4/(1-x)^25 + (30!/5!^6)*x^5/(1-x)^31 +...
Equivalently,
A(x) = 1/(1-x) + 720*x/(1-x)^7 + 7484400*x^2/(1-x)^13 + 137225088000*x^3/(1-x)^19 + 3246670537110000*x^4/(1-x)^25 + 88832646059788350720*x^5/(1-x)^31 +...+ A008979(n)*x^n/(1-x)^(6*n+1) +...
		

Crossrefs

Column k = 6 of A229142.

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n+5*k, n-k, k$6), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k] *Binomial[n+3*k,k] *Binomial[n+4*k,k]*Binomial[n+5*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (6*m)!/m!^6*x^m/(1-x+x*O(x^n))^(6*m+1)), n)}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k) *binomial(n+2*k,k) *binomial(n+3*k,k) *binomial(n+4*k,k)*binomial(n+5*k,k))}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k) * C(n+4*k,k) * C(n+5*k,k).
Recurrence: n^5*(2*n - 5)*(2*n - 3)*(3*n - 10)*(3*n - 7)*(3*n - 5)*(3*n - 4)*(6*n - 25)*(6*n - 19)*(6*n - 13)*(6*n - 7)*a(n) = (2*n - 5)*(3*n - 10)*(3*n - 7)*(6*n - 25)*(6*n - 19)*(6*n - 13)*(6*n - 5)*(839916*n^8 - 6159384*n^7 + 18804591*n^6 - 30967129*n^5 + 29803190*n^4 - 16984623*n^3 + 5534242*n^2 - 929843*n + 60482)*a(n-1) - (3*n - 10)*(6*n - 25)*(6*n - 19)*(58320*n^12 - 1030320*n^11 + 7973640*n^10 - 35550360*n^9 + 101096973*n^8 - 191892891*n^7 + 247426961*n^6 - 216687345*n^5 + 127127767*n^4 - 48662719*n^3 + 11593839*n^2 - 1535715*n + 84350)*a(n-2) + 10*(6*n - 25)*(6*n - 1)*(23328*n^13 - 618192*n^12 + 7344432*n^11 - 51616440*n^10 + 238504338*n^9 - 761904909*n^8 + 1722993100*n^7 - 2778206390*n^6 + 3175831572*n^5 - 2526793076*n^4 + 1352618106*n^3 - 459806772*n^2 + 89082095*n - 7435050)*a(n-3) - 5*(3*n - 1)*(6*n - 7)*(6*n - 1)*(11664*n^12 - 369360*n^11 + 5235192*n^10 - 43777800*n^9 + 239670873*n^8 - 901183065*n^7 + 2374616540*n^6 - 4392523494*n^5 + 5622136222*n^4 - 4816276070*n^3 + 2596763070*n^2 - 784074950*n + 100205500)*a(n-4) + (2*n - 1)*(3*n - 4)*(3*n - 1)*(6*n - 13)*(6*n - 7)*(6*n - 1)*(648*n^9 - 19548*n^8 + 256338*n^7 - 1909293*n^6 + 8851093*n^5 - 26285080*n^4 + 49492875*n^3 - 56141750*n^2 + 34024625*n - 8063750)*a(n-5) - (n-5)^5*(2*n - 3)*(2*n - 1)*(3*n - 7)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(6*n - 19)*(6*n - 13)*(6*n - 7)*(6*n - 1)*a(n-6). - Vaclav Kotesovec, Sep 23 2013
a(n) ~ c*d^n/(n^(5/2)), where d = 46661.9996785484656481246... is the root of the equation 1 - 6*d + 15*d^2 - 20*d^3 + 15*d^4 - 46662*d^5 + d^6 = 0 and c = 0.024758197509539176365175770882978221... - Vaclav Kotesovec, Sep 23 2013
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 361*x^2 + 2496841*x^3 + 34333162981*x^4 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016

A229050 G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1).

Original entry on oeis.org

1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2);
a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6 = 9;
a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;
a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;
a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,prod(j=0,k-1,binomial(n+j*k,k)))}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} Product_{j=0..k-1} binomial(n+j*k,k).
a(n) ~ exp(-1/12) * n^(n^2-n/2+1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 23 2013

A318107 Triangle read by rows: T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!).

Original entry on oeis.org

1, 6, 1, 90, 24, 1, 1680, 630, 60, 1, 34650, 16800, 2520, 120, 1, 756756, 450450, 92400, 7560, 210, 1, 17153136, 12108096, 3153150, 369600, 18900, 336, 1, 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1, 9465511770, 8779605120, 3259095840, 617512896, 63063000, 3363360, 83160, 720, 1
Offset: 0

Views

Author

Gheorghe Coserea, Sep 18 2018

Keywords

Comments

Diagonal of rational function R(x,y,z,t) = 1/(1 - (x + y + z + t*x*y*z)) with respect to x,y,z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t).
Annihilating differential operator: x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6).

Examples

			A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0]        [1]        [2]        [3]       [4]      [5]    [6]  [7]
[0] 1;
[1] 6,         1;
[2] 90,        24,        1;
[3] 1680,      630,       60,        1;
[4] 34650,     16800,     2520,      120,      1;
[5] 756756,    450450,    92400,     7560,     210,     1;
[6] 17153136,  12108096,  3153150,   369600,   18900,   336,   1;
[7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1;
[8] ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!);
    concat(vector(10, n, vector(n, k, T(n-1, k-1))))
    /* test:
    P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
      return(a);
    };
    apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
    };
    \\ diagonal property:
    x='x; y='y; z='z; t='t;
    diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x,y,z]) == vector(11, n, P(n-1))
    \\ annihilating diffop:
    y = Ser(vector(101, n, P(n-1)), 'x);
    p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x  - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6);
    0 == apply_diffop(p, y)
    */

Formula

Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A000172(n) = P_n(-4), A318108(n) = P_n(-3), A318109(n) = P_n(-2), A124435(n) = P_n(-1), A006480(n) = P_n(0), A081798(n) = P_n(1).
G.f. y = Sum_{n>=0} P_n(t)*x^n satisfies:
0 = x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*y'' + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*y' + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6)*y.

A229051 G.f.: Sum_{n>=0} (n^2)!/n!^n * (2*x)^n / (1-x)^(n^2+1).

Original entry on oeis.org

1, 3, 29, 13567, 1009142769, 19947560933879891, 170891375663413844489045533, 942542805274443250197129297402029958879, 4650425326497533656923054675764068523027405525255181377, 27202912617670436035808496756146798219927348043651854025145948950565355779
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 29*x^2 + 13567*x^3 + 1009142769*x^4 +...
where
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + (4!/2!^2)*(2*x)^2/(1-x)^5 + (9!/3!^3)*(2*x)^3/(1-x)^10 + (16!/4!^4)*(2*x)^4/(1-x)^17 + (25!/5!^5)*(2*x)^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + 6*(2*x)^2/(1-x)^5 + 1680*(2*x)^3/(1-x)^10 + 63063000*(2*x)^4/(1-x)^17 + 623360743125120*(2*x)^5/(1-x)^26 +...+ A034841(n)*(2*x)^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} 2^k * Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + 2*C(1,1);
a(2) = 1 + 2*C(2,1) + 4*C(2,2)*C(4,2);
a(3) = 1 + 2*C(3,1) + 4*C(3,2)*C(5,2) + 8*C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + 2*C(4,1) + 4*C(4,2)*C(6,2) + 8*C(4,3)*C(7,3)*C(10,3) + 16*C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + 2*C(5,1) + 4*C(5,2)*C(7,2) + 8*C(5,3)*C(8,3)*C(11,3) + 16*C(5,4)*C(9,4)*C(13,4)*C(17,4) + 32*C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 2*1 = 3;
a(2) = 1 + 2*2 + 4*1*6 = 29;
a(3) = 1 + 2*3 + 4*3*10 + 8*1*20*84 = 13567;
a(4) = 1 + 2*4 + 4*6*15 + 8*4*35*120 + 16*1*70*495*1820 = 1009142769;
a(5) = 1 + 2*5 + 4*10*21 + 8*10*56*165 + 16*5*126*715*2380 + 32*1*252*3003*15504*53130 = 19947560933879891; ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(2^k*multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
    seq(a(n), n=0..10);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[2^k*Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*(2*x)^m/(1-x+x*O(x^n))^(m^2+1)), n)}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,2^k*prod(j=0,k-1,binomial(n+j*k,k)))}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} 2^k * Product_{j=0..k-1} binomial(n+j*k,k).
a(n) ~ exp(-1/12) * n^(n^2-n/2+1) * 2^n / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 23 2013
Showing 1-10 of 12 results. Next