A229142
Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0
A(1,3) = 3*2+1 = 7:
(0,1,1)-(0,0,1)
/ X \
(1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
\ \ X / /
\ (1,1,0)-(1,0,0) /
`---------------´
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 7, 25, 121, ...
1, 1, 13, 115, 2641, 114121, ...
1, 1, 63, 2371, 392641, 169417921, ...
1, 1, 321, 54091, 67982041, 308238414121, ...
1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
Columns k=0+1, 2-10 give:
A000012,
A001850,
A081798,
A082488,
A082489,
A229049,
A229674,
A229675,
A229676,
A229677.
-
with(combinat):
A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A081798
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k).
Original entry on oeis.org
1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797, 15953338537885, 434479441772845, 11927609772412075, 329653844941016785, 9163407745486783435, 255982736410338609931, 7181987671728091545787
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- E. W. Weisstein, in MathWorld: Multinomial Coefficient.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
w := proc(i,j,k) option remember; if i=0 and j=0 and k = 0 then 1; elif i<0 or j<0 or k<0 then 0 else w(i-1,j,k)+w(i,j-1,k)+w(i,j,k-1)+w(i-1,j-1,k-1); end: end: for k from 0 to 10 do lprint(w(k,k,k)):end: # Theodore Kolokolnikov, Jul 04 2010
# second Maple program:
a:= proc(n) option remember; `if`(n<3, 51*n^2-45*n+1,
((3*n-2)*(30*n^2-50*n+13)*a(n-1)+(3*n-1)*(n-2)^2*a(n-3)
-(9*n^3-30*n^2+29*n-6)*a(n-2))/(n^2*(3*n-4)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 22 2013
-
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k] Binomial[n + 2k, k], {k, 0, n}]; Array[f, 17, 0] (* Robert G. Wilson v *)
CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3}, {1}, 27*x/(1 - x)^3]/(1 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 07 2016 *)
-
makelist(sum(binomial(n,k)*binomial(n+k,k)*binomial(n+2*k,k),k,0,n),n,0,12);
-
{a(n)=polcoeff(sum(m=0,n,(3*m)!/m!^3*x^m/(1-x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Sep 22 2013
-
a(n) = sum(k = 0, n, binomial(n, k) * binomial(n+k, k) * binomial(n+2*k, k)); \\ Michel Marcus, Jan 14 2016
A082489
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k) * C(n+4*k,k).
Original entry on oeis.org
1, 121, 114121, 169417921, 308238414121, 629799991355641, 1387152264043496161, 3220175519103433952161, 7771784978946238318454761, 19326687177288750280293146161, 49215884415076728067274047737961, 127771596843320597524806463425540481
Offset: 0
G.f.: A(x) = 1 + 121*x + 114121*x^2 + 169417921*x^3 + 308238414121*x^4 +...
where
A(x) = 1/(1-x) + (5!/1!^5)*x/(1-x)^6 + (10!/2!^5)*x^2/(1-x)^11 + (15!/3!^5)*x^3/(1-x)^16 + (20!/4!^5)*x^4/(1-x)^21 + (25!/5!^5)*x^5/(1-x)^26 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 120*x/(1-x)^6 + 113400*x^2/(1-x)^11 + 168168000*x^3/(1-x)^16 + 305540235000*x^4/(1-x)^21 + 623360743125120*x^5/(1-x)^26 +...+ A008978(n)*x^n/(1-x)^(5*n+1) +...
-
with(combinat):
a:= n-> add(multinomial(n+4*k, n-k, k$5), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k]*Binomial[n+4*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (5*m)!/m!^5*x^m/(1-x+x*O(x^n))^(5*m+1)), n)}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013
-
{a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k) *binomial(n+3*k, k)*binomial(n+4*k, k))}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 22 2013
A361637
Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0
A229049
G.f.: Sum_{n >= 0} (6*n)!/n!^6 * x^n / (1-x)^(6*n+1).
Original entry on oeis.org
1, 721, 7489441, 137322405361, 3249278494922881, 88913838899388373921, 2672932604015450235911761, 85821373873727899097881489201, 2892941442791065880984595547275841, 101239016762863657789924022384195015281, 3649717311362112161867915447690005522733041
Offset: 0
G.f.: A(x) = 1 + 721*x + 7489441*x^2 + 137322405361*x^3 + 3249278494922881*x^4 +...
where
A(x) = 1/(1-x) + (6!/1!^6)*x/(1-x)^7 + (12!/2!^6)*x^2/(1-x)^13 + (18!/3!^6)*x^3/(1-x)^19 + (24!/4!^6)*x^4/(1-x)^25 + (30!/5!^6)*x^5/(1-x)^31 +...
Equivalently,
A(x) = 1/(1-x) + 720*x/(1-x)^7 + 7484400*x^2/(1-x)^13 + 137225088000*x^3/(1-x)^19 + 3246670537110000*x^4/(1-x)^25 + 88832646059788350720*x^5/(1-x)^31 +...+ A008979(n)*x^n/(1-x)^(6*n+1) +...
-
with(combinat):
a:= n-> add(multinomial(n+5*k, n-k, k$6), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k] *Binomial[n+3*k,k] *Binomial[n+4*k,k]*Binomial[n+5*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (6*m)!/m!^6*x^m/(1-x+x*O(x^n))^(6*m+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k) *binomial(n+2*k,k) *binomial(n+3*k,k) *binomial(n+4*k,k)*binomial(n+5*k,k))}
for(n=0,15,print1(a(n),", "))
A229050
G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1).
Original entry on oeis.org
1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2);
a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6 = 9;
a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;
a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;
a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
-
with(combinat):
a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,prod(j=0,k-1,binomial(n+j*k,k)))}
for(n=0,15,print1(a(n),", "))
A274783
Diagonal of the rational function 1/(1 - (w*x*y*z + w*x*y + w*x*z + w*y*z + x*y*z)).
Original entry on oeis.org
1, 1, 1, 25, 121, 361, 3361, 24361, 116425, 790441, 6060121, 36888721, 238815721, 1760983225, 11968188961, 79763351305, 570661612585, 4040282139625, 27901708614985, 198090585115105, 1420583920034161, 10056659775872161, 71730482491962361, 517012699162717825, 3713833648541268121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
with(combinat):
seq(add((n+k)!/(k!^4*(n-3*k)!), k = 0..floor(n/3)), n = 0..20); # Peter Bala, Jan 27 2018
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y*z+x*y*z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(20, R, [x,y,z,w])
A274785
Diagonal of the rational function 1/(1-(w*x*y*z + w*x*z + w*y + x*y + z)).
Original entry on oeis.org
1, 1, 25, 121, 2881, 23521, 484681, 5223625, 97949041, 1243490161, 22061635465, 309799010665, 5331441539425, 79799232449665, 1352284119871465, 21095036702450281, 355125946871044561, 5694209222592780625, 95705961654403180201, 1563714140278617173641, 26311422169994777663761
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..801
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
seq(add(binomial(n+2*k, 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2, k = 0..floor(n/2)), n = 0..20); # Peter Bala, Jan 27 2018
-
Table[Sum[Binomial[n + 2*k, 2*k]*Binomial[n, 2*k]*Binomial[2*k, k]^2, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*z+w*y+x*y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(12, R, [x,y,z,w])
-
a(n) = sum(k=0, n\2, binomial(n + 2*k,2*k) * binomial(n,2*k) * binomial(2*k,k)^2) \\ Andrew Howroyd, Mar 18 2023
A229051
G.f.: Sum_{n>=0} (n^2)!/n!^n * (2*x)^n / (1-x)^(n^2+1).
Original entry on oeis.org
1, 3, 29, 13567, 1009142769, 19947560933879891, 170891375663413844489045533, 942542805274443250197129297402029958879, 4650425326497533656923054675764068523027405525255181377, 27202912617670436035808496756146798219927348043651854025145948950565355779
Offset: 0
G.f.: A(x) = 1 + 3*x + 29*x^2 + 13567*x^3 + 1009142769*x^4 +...
where
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + (4!/2!^2)*(2*x)^2/(1-x)^5 + (9!/3!^3)*(2*x)^3/(1-x)^10 + (16!/4!^4)*(2*x)^4/(1-x)^17 + (25!/5!^5)*(2*x)^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + 6*(2*x)^2/(1-x)^5 + 1680*(2*x)^3/(1-x)^10 + 63063000*(2*x)^4/(1-x)^17 + 623360743125120*(2*x)^5/(1-x)^26 +...+ A034841(n)*(2*x)^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} 2^k * Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + 2*C(1,1);
a(2) = 1 + 2*C(2,1) + 4*C(2,2)*C(4,2);
a(3) = 1 + 2*C(3,1) + 4*C(3,2)*C(5,2) + 8*C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + 2*C(4,1) + 4*C(4,2)*C(6,2) + 8*C(4,3)*C(7,3)*C(10,3) + 16*C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + 2*C(5,1) + 4*C(5,2)*C(7,2) + 8*C(5,3)*C(8,3)*C(11,3) + 16*C(5,4)*C(9,4)*C(13,4)*C(17,4) + 32*C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 2*1 = 3;
a(2) = 1 + 2*2 + 4*1*6 = 29;
a(3) = 1 + 2*3 + 4*3*10 + 8*1*20*84 = 13567;
a(4) = 1 + 2*4 + 4*6*15 + 8*4*35*120 + 16*1*70*495*1820 = 1009142769;
a(5) = 1 + 2*5 + 4*10*21 + 8*10*56*165 + 16*5*126*715*2380 + 32*1*252*3003*15504*53130 = 19947560933879891; ...
-
with(combinat):
a:= n-> add(2^k*multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
seq(a(n), n=0..10); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[2^k*Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*(2*x)^m/(1-x+x*O(x^n))^(m^2+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,2^k*prod(j=0,k-1,binomial(n+j*k,k)))}
for(n=0,15,print1(a(n),", "))
A336170
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+3*k)!/((n-k)! * k!^4).
Original entry on oeis.org
1, 23, 2401, 347279, 58370761, 10693893503, 2071837562929, 417449585719343, 86587926575712937, 18366152017597820303, 3965385492963153556441, 868598410928920193676023, 192552082030654661729957401, 43117650276328970463683450639, 9738695910884616220689842598481
Offset: 0
-
a[n_] := Sum[(-1)^(n - k)*(n + 3*k)!/((n - k)!*k!^4), {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Jul 10 2020 *)
-
{a(n) = sum(k=0, n, (-1)^(n-k)*(n+3*k)!/((n-k)!*k!^4))}
-
N=20; x='x+O('x^N); Vec(sum(k=0, N, (4*k)!/k!^4*x^k/(1+x)^(4*k+1)))
Showing 1-10 of 11 results.
Comments