A229142
Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0
A(1,3) = 3*2+1 = 7:
(0,1,1)-(0,0,1)
/ X \
(1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
\ \ X / /
\ (1,1,0)-(1,0,0) /
`---------------´
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 7, 25, 121, ...
1, 1, 13, 115, 2641, 114121, ...
1, 1, 63, 2371, 392641, 169417921, ...
1, 1, 321, 54091, 67982041, 308238414121, ...
1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
Columns k=0+1, 2-10 give:
A000012,
A001850,
A081798,
A082488,
A082489,
A229049,
A229674,
A229675,
A229676,
A229677.
-
with(combinat):
A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A082488
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k).
Original entry on oeis.org
1, 25, 2641, 392641, 67982041, 12838867105, 2564949195985, 533008982952625, 114035552691160585, 24950692835328410305, 5557138347370070346601, 1255741805437716400557625, 287180884347761929741524361, 66343186345544102086872515761
Offset: 0
G.f.: A(x) = 1 + 25*x + 2641*x^2 + 392641*x^3 + 67982041*x^4 + 12838867105*x^5 +...
where
A(x) = 1/(1-x) + (4!/1!^4)*x/(1-x)^5 + (8!/2!^4)*x^2/(1-x)^9 + (12!/3!^4)*x^3/(1-x)^13 + (16!/4!^4)*x^4/(1-x)^17 + (20!/5!^4)*x^5/(1-x)^21 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 24*x/(1-x)^5 + 2520*x^2/(1-x)^9 + 369600*x^3/(1-x)^13 + 63063000*x^4/(1-x)^17 + 11732745024*x^5/(1-x)^21 +...+ A008977(n)*x^n/(1-x)^(4*n+1) +...
-
-
[&+[Binomial(n, k)*Binomial(n+k, k)*Binomial(n+2*k, k)*Binomial(n+3*k, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Oct 16 2018
-
with(combinat):
a:= n-> add(multinomial(n+3*k, n-k, k$4), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k]* Binomial[n+3*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (4*m)!/m!^4*x^m/(1-x+x*O(x^n))^(4*m+1)), n)}
for(n=0, 15, print1(a(n), ", "))
-
{a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k)*binomial(n+3*k, k))}
for(n=0, 15, print1(a(n), ", "))
A229049
G.f.: Sum_{n >= 0} (6*n)!/n!^6 * x^n / (1-x)^(6*n+1).
Original entry on oeis.org
1, 721, 7489441, 137322405361, 3249278494922881, 88913838899388373921, 2672932604015450235911761, 85821373873727899097881489201, 2892941442791065880984595547275841, 101239016762863657789924022384195015281, 3649717311362112161867915447690005522733041
Offset: 0
G.f.: A(x) = 1 + 721*x + 7489441*x^2 + 137322405361*x^3 + 3249278494922881*x^4 +...
where
A(x) = 1/(1-x) + (6!/1!^6)*x/(1-x)^7 + (12!/2!^6)*x^2/(1-x)^13 + (18!/3!^6)*x^3/(1-x)^19 + (24!/4!^6)*x^4/(1-x)^25 + (30!/5!^6)*x^5/(1-x)^31 +...
Equivalently,
A(x) = 1/(1-x) + 720*x/(1-x)^7 + 7484400*x^2/(1-x)^13 + 137225088000*x^3/(1-x)^19 + 3246670537110000*x^4/(1-x)^25 + 88832646059788350720*x^5/(1-x)^31 +...+ A008979(n)*x^n/(1-x)^(6*n+1) +...
-
with(combinat):
a:= n-> add(multinomial(n+5*k, n-k, k$6), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]*Binomial[n+2*k,k] *Binomial[n+3*k,k] *Binomial[n+4*k,k]*Binomial[n+5*k,k], {k, 0, n}],{n,0,20}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (6*m)!/m!^6*x^m/(1-x+x*O(x^n))^(6*m+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k) *binomial(n+2*k,k) *binomial(n+3*k,k) *binomial(n+4*k,k)*binomial(n+5*k,k))}
for(n=0,15,print1(a(n),", "))
A229050
G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1).
Original entry on oeis.org
1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2);
a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6 = 9;
a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;
a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;
a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
-
with(combinat):
a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,prod(j=0,k-1,binomial(n+j*k,k)))}
for(n=0,15,print1(a(n),", "))
A361703
Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0
-
a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));
A361636
Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).
Original entry on oeis.org
1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0
-
Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
-
a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));
A229051
G.f.: Sum_{n>=0} (n^2)!/n!^n * (2*x)^n / (1-x)^(n^2+1).
Original entry on oeis.org
1, 3, 29, 13567, 1009142769, 19947560933879891, 170891375663413844489045533, 942542805274443250197129297402029958879, 4650425326497533656923054675764068523027405525255181377, 27202912617670436035808496756146798219927348043651854025145948950565355779
Offset: 0
G.f.: A(x) = 1 + 3*x + 29*x^2 + 13567*x^3 + 1009142769*x^4 +...
where
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + (4!/2!^2)*(2*x)^2/(1-x)^5 + (9!/3!^3)*(2*x)^3/(1-x)^10 + (16!/4!^4)*(2*x)^4/(1-x)^17 + (25!/5!^5)*(2*x)^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + (2*x)/(1-x)^2 + 6*(2*x)^2/(1-x)^5 + 1680*(2*x)^3/(1-x)^10 + 63063000*(2*x)^4/(1-x)^17 + 623360743125120*(2*x)^5/(1-x)^26 +...+ A034841(n)*(2*x)^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} 2^k * Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + 2*C(1,1);
a(2) = 1 + 2*C(2,1) + 4*C(2,2)*C(4,2);
a(3) = 1 + 2*C(3,1) + 4*C(3,2)*C(5,2) + 8*C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + 2*C(4,1) + 4*C(4,2)*C(6,2) + 8*C(4,3)*C(7,3)*C(10,3) + 16*C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + 2*C(5,1) + 4*C(5,2)*C(7,2) + 8*C(5,3)*C(8,3)*C(11,3) + 16*C(5,4)*C(9,4)*C(13,4)*C(17,4) + 32*C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 2*1 = 3;
a(2) = 1 + 2*2 + 4*1*6 = 29;
a(3) = 1 + 2*3 + 4*3*10 + 8*1*20*84 = 13567;
a(4) = 1 + 2*4 + 4*6*15 + 8*4*35*120 + 16*1*70*495*1820 = 1009142769;
a(5) = 1 + 2*5 + 4*10*21 + 8*10*56*165 + 16*5*126*715*2380 + 32*1*252*3003*15504*53130 = 19947560933879891; ...
-
with(combinat):
a:= n-> add(2^k*multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
seq(a(n), n=0..10); # Alois P. Heinz, Sep 23 2013
-
Table[Sum[2^k*Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*(2*x)^m/(1-x+x*O(x^n))^(m^2+1)), n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=sum(k=0,n,2^k*prod(j=0,k-1,binomial(n+j*k,k)))}
for(n=0,15,print1(a(n),", "))
A336171
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+4*k)!/((n-k)! * k!^5).
Original entry on oeis.org
1, 119, 112681, 166923119, 302857024681, 616967236620839, 1354737230950753441, 3135180238488702264959, 7543003841027749147438441, 18698821633118804601271092959, 47466852090165503045193665276041, 122841260732098480578334554450553679, 323029586700918689286922557725358306721
Offset: 0
-
a[n_] := Sum[(-1)^(n - k)*(n + 4*k)!/((n - k)!*k!^5), {k, 0, n}]; Array[a, 13, 0] (* Amiram Eldar, Jul 10 2020 *)
-
{a(n) = sum(k=0, n, (-1)^(n-k)*(n+4*k)!/((n-k)!*k!^5))}
-
N=20; x='x+O('x^N); Vec(sum(k=0, N, (5*k)!/k!^5*x^k/(1+x)^(5*k+1)))
A385606
Diagonal of the rational function 1/(1 - (v^3 + w^3 + x^3 + y^3 + z^3 + v*w*x*y*z)).
Original entry on oeis.org
1, 1, 1, 121, 721, 2521, 120121, 1262521, 7514641, 200655841, 2804296441, 23211542641, 443673670441, 7070369866561, 73192033638361, 1173608444069881, 19482750854113681, 235115468646608881, 3483568444035458401, 57574418930692099801, 769737183831483390601, 11118980118960559362001
Offset: 0
A385607
Diagonal of the rational function 1/(1 - (v^2 + w^2 + x^2 + y^2 + z^2 + v*w*x*y*z)).
Original entry on oeis.org
1, 1, 121, 721, 115921, 1254121, 175667521, 2723150641, 328524651841, 6553910658241, 694593264839761, 16751100559753561, 1592929589394223081, 44555491032952142881, 3872288533662063462481, 121957120480085202781681, 9836937778718128127534881, 341177468192261294809070401
Offset: 0
Showing 1-10 of 10 results.
Comments