cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A003052 Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).

Original entry on oeis.org

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 525
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Nov 28 2020: (Start)
The term "self numbers" was coined by Kaprekar (1959). The term "Colombian number" was coined by Recamán (1973) of Bogota, Colombia.
The asymptotic density of this sequence is approximately 0.0977778 (Guaraldo, 1978). (End)

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.
  • Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
  • Bernardo Recamán, The Bogota Puzzles, Dover Publications, Inc., 2020, chapter 36, p. 33.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Author?, J. Recreational Math., vol. 23, no. 1, p. 244, 1991.

Crossrefs

For self primes, i.e., self numbers which are primes, see A006378.
Complement of A176995.
See A010061 for the binary version, A283002 for a base-100 version.
Cf. A247104 (subsequence of squarefree terms).
Cf. A377472 for first differences, A377474 for indices where new differences appear.

Programs

  • Haskell
    a003052 n = a003052_list !! (n-1)
    a003052_list = filter ((== 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
  • Maple
    isA003052 := proc(n) local k ; for k from 0 to n do if k+A007953(k) = n then RETURN(false): fi; od: RETURN(true) ; end:
    A003052 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003052(a) then RETURN(a) ; fi; od; fi; end: # R. J. Mathar, Jul 27 2009
  • Mathematica
    nn = 525; Complement[Range[nn], Union[Table[n + Total[IntegerDigits[n]], {n, nn}]]] (* T. D. Noe, Mar 31 2013 *)
  • PARI
    is_A003052(n)={for(i=1,min(n\2,9*#digits(n)), sumdigits(n-i)==i && return); n}  \\ M. F. Hasler, Mar 20 2011, updated Nov 08 2018
    
  • PARI
    is(n) = {if(n < 30, return((n < 10 && n%2 == 1) || n == 20)); qd = 1 + logint(n, 10); r = 1 + (n-1)%9; h = (r + 9 * (r%2))/2; ld = 10; while(h + 9*qd >= n % ld, ld*=10); vs = vecsum(digits(n \ ld)); n %= ld; for(i = 0, qd, if(vs + vecsum(digits(n - h - 9*i)) == h + 9*i, return(0))); 1} \\ David A. Corneth, Aug 20 2020
    

Formula

A230093(a(n)) = 0. - Reinhard Zumkeller, Oct 11 2013
In fact this defines the sequence: x is in the sequence iff A230093(x) = 0. - M. F. Hasler, Nov 08 2018

Extensions

More terms from James Sellers, Jul 06 2000

A062028 a(n) = n + sum of the digits of n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 77
Offset: 0

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(n) = A248110(n,A007953(n)). - Reinhard Zumkeller, Oct 01 2014

Examples

			a(34) = 34 + 3 + 4 = 41, a(40) = 40 + 4 = 44.
		

Crossrefs

Indices of: A047791 (primes), A107743 (composites), A066564 (squares), A084661 (cubes).
Iterations: A004207 (start=1), A016052 (start=3), A007618 (start=5), A006507 (start=7), A016096 (start=9).

Programs

  • Haskell
    a062028 n = a007953 n + n  -- Reinhard Zumkeller, Oct 11 2013
    
  • Maple
    with(numtheory): for n from 1 to 100 do a := convert(n,base,10):
    c := add(a[i],i=1..nops(a)): printf(`%d,`,n+c); od:
    A062028 := n -> n+add(i,i=convert(n,base,10)) # M. F. Hasler, Nov 08 2018
  • Mathematica
    Table[n + Total[IntegerDigits[n]], {n, 0, 100}]
  • PARI
    A062028(n)=n+sumdigits(n) \\ M. F. Hasler, Jul 19 2015
    
  • Python
    def a(n): return n + sum(map(int, str(n)))
    print([a(n) for n in range(71)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n + A007953(n).
a(n) = A160939(n+1) - 1. - Filip Zaludek, Oct 26 2016

Extensions

More terms from Vladeta Jovovic, Jun 05 2001

A228085 a(n) = number of distinct k which satisfy n = k + wt(k), where wt(k) (A000120) gives the number of 1's in binary representation of a nonnegative integer k.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

wt(k) is also called bitcount(k).
a(n) = number of times n occurs in A092391.
The first 2 occurs at n = A230303(2) = 5 (as we have two solutions A092391(3) = A092391(4) = 5).
The first 3 occurs at n = A230303(3) = 129 (as we have three solutions A092391(123) = A092391(124) = A092391(128) = 129).
The first 4 occurs at n = A230303(4) = 4102, where we have solutions A092391(4091) = A092391(4092) = A092391(4099) = A092391(4100) = 4102.
For n>=1, a(2^n) = a(n-1) since an integer k = m is a solution to n-1 = m + wt(m) if and only if k = 2^n - 1 - m is a solution to 2^n = k + wt(k). - Max Alekseyev, Feb 23 2021

Crossrefs

A010061 gives the position of zeros, A228082 the positions of nonzeros, A228088 the positions of ones.
Cf. A000120, A010062, A092391, A228086, A228087, A228091 (positions of 2's), A227643, A230058, A230092 (positions of 3's), A230093, A227915 (positions of 4's), A070939, A230303.

Programs

  • Haskell
    a228085 n = length $ filter ((== n) . a092391) [n - a070939 n .. n]
    -- Reinhard Zumkeller, Oct 13 2013
  • Maple
    For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
    # Find all inverses of m under x -> x + wt(x) - N. J. A. Sloane, Oct 19 2013
    A000120 := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
    F:=proc(m) local ans,lb,n,i;
    lb:=m-ceil(log(m+1)/log(2)); ans:=[];
    for n from max(1,lb) to m do if (n+wt(n)) = m then ans:=[op(ans),n]; fi; od:
    [seq(ans[i],i=1..nops(ans))];
    end;
  • Mathematica
    nmax = 8191; Clear[a]; a[_] = 0;
    Scan[Set[a[#[[1]]], #[[2]]]&, Tally[Table[n + DigitCount[n, 2, 1], {n, 0, nmax}]]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Oct 29 2019 *)
    a[n_] := Module[{k, cnt = 0}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], cnt++]]; cnt];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 28 2020 *)

A176995 Numbers that can be written as (m + sum of digits of m) for some m.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 21 2011

Keywords

Comments

The asymptotic density of this sequence is approximately 0.9022222 (Guaraldo, 1978). - Amiram Eldar, Nov 22 2020

Examples

			a(5) = 10 = 5 + (5);
a(87) = 100 = 86 + (8+6);
a(898) = 1000 = 977 + (9+7+7);
a(9017) = 10000 = 9968 + (9+9+6+8).
		

References

  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar, Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).

Crossrefs

Complement of A003052, range of A062028.

Programs

  • Haskell
    a176995 n = a176995_list !! (n-1)
    a176995_list = filter ((> 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
    
  • Mathematica
    Select[Union[Table[n + Total[IntegerDigits[n]], {n, 77}]], # <= 77 &] (* Jayanta Basu, Jul 27 2013 *)
  • PARI
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from A003052
    isok(n) = ! is_A003052(n) \\ Michel Marcus, Aug 20 2020

Formula

A230093(a(n)) > 0. - Reinhard Zumkeller, Oct 11 2013

A006064 Smallest junction number with n generators.

Original entry on oeis.org

0, 101, 10000000000001, 1000000000000000000000102
Offset: 1

Views

Author

Keywords

Comments

Strictly speaking, a junction number is a number n with more than one solution to x+digitsum(x) = n. However, it seems best to start this sequence with n=0, for which there is just one solution, x=0. - N. J. A. Sloane, Oct 31 2013.
a(3) = 10^13 + 1 was found by Narasinga Rao, who reports that Kaprekar verified that it is the smallest term. No details of Kaprekar's proof were given.
a(4) = 10^24 + 102 was conjectured by Narasinga Rao.
a(5) = 10^1111111111124 + 102. - Conjectured by Narasinga Rao, confirmed by Max Alekseyev and N. J. A. Sloane.
a(6) = 10^2222222222224 + 10000000000002. - Max Alekseyev
a(7) = 10^( (10^24 + 10^13 + 115) / 9 ) + 10^13 + 2. - Max Alekseyev
a(8) = 10^( (2*10^24 + 214)/9 ) + 10^24 + 103. - Max Alekseyev

Examples

			a(2) = 101 since 101 is the smallest number with two generators: 101 = A062028(91) = A062028(100).
a(4) = 10^24 + 102 = 1000000000000000000000102 has exactly four inverses w.r.t. A062028, namely 999999999999999999999893, 999999999999999999999902, 1000000000000000000000091 and 1000000000000000000000100.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003052, A230093, A230100, A230303, A230857 (highest power of 10).
Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.

Formula

a(n) = the smallest m such that there are exactly n solutions to A062028(x)=m.

Extensions

Edited, a(5)-a(6) added by Max Alekseyev, Jun 01 2011
a(1) added, a(5) corrected, a(7)-a(8) added by Max Alekseyev, Oct 26 2013

A107740 Number of numbers m such that prime(n) = m + (digit sum of m).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

a(A049084(A006378(n))) = 0; a(A049084(A048521(n))) > 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]
a(n) <= 2 for n <= 10^5. Conjecture: sequence is bounded.
I would rather conjecture the opposite. Of course a(n) >= m implies n >= A006064(m), having more than A230857(m) digits, i.e., 14, 25 and 1111111111125 digits of n, for a(n) = 3, 4, 5. - M. F. Hasler, Nov 09 2018

Examples

			A000040(26) = 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0): a(26) = # {91, 100} = 2.
		

Crossrefs

Programs

  • Haskell
    a107740 n = length [() | let p = a000040 n,
                             m <- [max 0 (p - 9 * a055642 p) .. p - 1],
                             a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    Table[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
  • PARI
    apply( A107740(n)=A230093(prime(n)), [1..150]) \\ M. F. Hasler, Nov 08 2018

Formula

a(n) = A230093(prime(n)), i.e.: A107740 = A230093 o A000040. - M. F. Hasler, Nov 08 2018

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A230303 Let M(1)=0 and for n >= 2, let B(n)=M(ceiling(n/2))+M(floor(n/2))+2, M(n)=2^B(n)+M(floor(n/2))+1; sequence gives M(n).

Original entry on oeis.org

0, 5, 129, 4102, 87112285931760246646623899502532662132742, 1852673427797059126777135760139006525652319754650249024631321344126610074239106
Offset: 1

Views

Author

N. J. A. Sloane, Oct 24 2013; Mar 26 2014

Keywords

Comments

M(n) is the smallest value of k such that A228085(k) = n. For example, 129 is the first time a 3 appears in A228085 (and is therefore the first term in A230092). M(4) = 4102 is the first time a 4 appears in A228085 (and is therefore the first term in A227915).

Examples

			The terms are a(1) = 0, a(2) = 2^2+0+1, a(3) = 2^7+0+1, a(4) = 2^12+5+1, a(5) = 2^136+5+1, a(6) = 2^160+129+1, a(7) = 2^4233+129+1, a(8) = 2^8206+4102+1, a(9) = 2^k+4102+1 with k=2^136+4110, ... .
The length (in bits) of the n-th term is A230302(n)+1.
		

Crossrefs

Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.

Programs

  • Maple
    f:=proc(n) option remember; local B, M;
    if n<=1 then RETURN([0,0]);
    else
    if (n mod 2) = 0 then B:=2*f(n/2)[2]+2;
    else B:=f((n+1)/2)[2]+f((n-1)/2)[2]+2; fi;
    M:=2^B+f(floor(n/2))[2]+1; RETURN([B,M]); fi;
    end proc;
    [seq(f(n)[2],n=1..6)];

Formula

Define i by 2^(i-1) < n <= 2^i. Then it appears that
a(n) = 2^2^2^...^2^x
a tower of height i+3, containing i+2 2's, where x is in the range 0 < x <= 1.
For example, if n=7, i=3, and
a(7) = 2^4233+130 = 2^2^2^2^2^.88303276...
Note also that i+2 = A230864(a(n)).

Extensions

a(1)-a(8) were found by Donovan Johnson, Oct 22 2013.

A230639 Let M(1)=0 and for n>1, B(n)=(M(ceiling(n/2))+M(floor(n/2))+2)/2, M(n)=3^B(n)+M(floor(n/2))+1. This sequence gives B(n).

Original entry on oeis.org

1, 3, 5, 17, 29, 139, 249, 64570209, 129140169, 34315253252541, 68630377364913, 1044297913696328396542704032390321722034449074468444246791788357605, 2088595827392656793085408064780643444068898148936888424953199350297
Offset: 2

Views

Author

N. J. A. Sloane, Oct 31 2013

Keywords

Comments

The largest power of 3 in M(n) = A230640(n).

Crossrefs

Cf. A230093, A230640 (for M(n)).
Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1)

Programs

  • Maple
    f:=proc(n) option remember; local B, M;
    if n<=1 then RETURN([0, 0]);
    else
    B:=(f(ceil(n/2))[2] + f(floor(n/2))[2] + 2)/2;
    M:=3^B+f(floor(n/2))[2]+1; RETURN([B, M]); fi;
    end proc;
    [seq(f(n)[1], n=1..9)];

Extensions

Terms a(10) onward from Max Alekseyev, Nov 02 2013

A227915 Numbers of the form k + wt(k) for exactly four distinct k, where wt(k) = A000120(k) is the binary weight of k.

Original entry on oeis.org

4102, 12295, 20487, 28680, 36871, 45064, 53256, 61449, 69639, 77832, 86024, 94217, 102408, 110601, 118793, 126986, 135175, 143368, 151560, 159753, 167944, 176137, 184329, 192522, 200712, 208905, 217097, 225290, 233481, 241674, 249866, 258059, 266247, 274440, 282632, 290825, 299016, 307209, 315401, 323594, 331784, 339977
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 13 2013

Keywords

Comments

Numbers occurring exactly four times in A092391: A228085(a(n)) = 4. For the first number that appears k times, see A230303.

Examples

			a(1) = 4102, the four k with A092391(k) = 4102 being:
4091 = '111111111011', A000120(4091) = 11, 4091 + 11 = 4102;
4092 = '111111111100', A000120(4092) = 12, 4092 + 10 = 4102;
4099 = '1000000000011', A000120(4099) = 3, 4099 + 3 = 4102;
4100 = '1000000000100', A000120(4100) = 2, 4100 + 2 = 4102.
		

Crossrefs

Programs

  • Haskell
    a227915 n = a227915_list !! (n-1)
    a227915_list = filter ((== 4) . a228085) [1..]
Showing 1-10 of 23 results. Next