cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000118 Number of ways of writing n as a sum of 4 squares; also theta series of four-dimensional cubic lattice Z^4.

Original entry on oeis.org

1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144, 96, 96, 112, 192, 192, 24, 144, 312, 160, 144, 256, 288, 192, 96, 248, 336, 320, 192, 240, 576, 256, 24, 384, 432, 384, 312, 304, 480, 448, 144, 336, 768, 352, 288, 624, 576, 384, 96, 456, 744, 576, 336, 432, 960, 576, 192
Offset: 0

Views

Author

Keywords

Comments

a^2 + b^2 + c^2 + d^2 is one of Ramanujan's 54 universal quaternary quadratic forms. - Michael Somos, Apr 01 2008
a(n) is also the number of quaternions q = a + bi + cj + dk, where a, b, c, d are integers, such that a^2 + b^2 + c^2 + d^2 = n (i.e., so that n is the norm of q). These are Lipschitz integer quaternions. - Rick L. Shepherd, Mar 27 2009
Number 5 and 35 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018
This is the convolution square of A004018. - Pierre Abbat, May 15 2023

Examples

			G.f. = 1 + 8*q + 24*q^2 + 32*q^3 + 24*q^4 + 48*q^5 + 96*q^6 + 64*q^7 + 24*q^8 + ...
a(1)=8 counts 1 = 1^2 + 0^2 + 0^2 + 0^2 = 0^2 + 1^2 + 0^2 + 0^2 = 0^2 + 0^2 + 1^2 + 0^2 = 0^2 + 0^2 + 0^2 + 1^2 and 4 more sums where 1^2 is replaced by (-1)^2. - _R. J. Mathar_, May 16 2023
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, ch. 8, pp. 231-2.
  • J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, Springer-Verlag, p. 108, Eq. (49).
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.28). See also top of p. 94.
  • E. Freitag and R. Busam, Funktionentheorie 1, 4. Auflage, Springer, 2006, p. 392.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314, Theorem 386.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of integers, Chapman & Hall/CRC, 2006, p. 29.
  • S. Ramanujan, Collected Papers, Chap. 20, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1917) 11-21).

Crossrefs

Row d=4 of A122141 and of A319574, 4th column of A286815.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1, 2, 3, 4, 5, 6, 7, 8, 12, see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Haskell
    a000118 0 = 1
    a000118 n = 8 * a046897 n  -- Reinhard Zumkeller, Aug 12 2015
    
  • Julia
    # JacobiTheta3 is defined in A000122.
    A000118List(len) = JacobiTheta3(len, 4)
    A000118List(57) |> println # Peter Luschny, Mar 12 2018
    
  • MATLAB
    a(n) = 8 * sum(find(mod(n,1:n)==0 & mod(1:n,4))) + (n==0) % David Mellinger, Aug 04 2025
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] + 8*A[2]; /* Michael Somos, Aug 21 2014 */
    
  • Maple
    (add(q^(m^2),m=-10..10))^4; seq(coeff(%,q,n), n=0..50);
    # Alternative:
    A000118list := proc(len) series(JacobiTheta3(0, x)^4, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000118list(57); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[4, n], {n, 0, 46}]
    a[ n_] :=  SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 8 Sum[ If[ Mod[ d, 4] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Feb 20 2015 *)
    QP = QPochhammer; CoefficientList[QP[-q]^8/QP[q^2]^4 + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 8 * sumdiv( n, d, if( d%4, d)))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2))^4, n))}; /* Michael Somos, Apr 01 2008 */
    
  • PARI
    q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4) /* Joerg Arndt, Apr 08 2013 */
    
  • PARI
    a(n) = 8*sigma(n) - if (n % 4, 0, 32*sigma(n/4)); \\ Michel Marcus, Jul 13 2016
    
  • Python
    from sympy import divisors
    def a(n): return 1 if n==0 else 8*sum(d for d in divisors(n) if d%4 != 0)
    print([a(n) for n in range(57)]) # Michael S. Branicky, Jan 08 2021
    
  • Python
    from sympy import divisor_sigma
    def A000118(n): return 1 if n == 0 else 8*divisor_sigma(n) if n % 2 else 24*divisor_sigma(int(bin(n)[2:].rstrip('0'),2)) # Chai Wah Wu, Jun 27 2022
    
  • Sage
    A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] + 8*A[1]; # Michael Somos, Jun 12 2014
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*4)
    Q.representation_number_list(60) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: theta_3(q)^4 = (Product_{n>=1} (1-q^(2n))*(1+q^(2n-1))^2)^4 = eta(-q)^8/eta(q^2)^4; eta = Dedekind's function.
a(n) = 8*sigma(n) - 32*sigma(n/4) for n > 0, where the latter term is 0 if n is not a multiple of 4.
Euler transform of period 4 sequence [8, -12, 8, -4, ...]. - Michael Somos, Dec 16 2002
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2). - Michael Somos, Nov 02 2006
G.f. is a period 1 Fourier series which satisfies f(-1/(4*t)) = 4*(t/i)^2*f(t) where q = exp(2*Pi*i*t). - Michael Somos, Jan 25 2008
For n > 0, a(n)/8 is multiplicative and a(p^n)/8 = 1 + p + p^2 + ... + p^n for p an odd prime, a(2^n)/8 = 1 + 2 for n > 0.
a(n) = 8*A000203(n/A006519(n))*(2 + (-1)^n). - Benoit Cloitre, May 16 2002
G.f.: 1 + 8*Sum_{k>0} x^k / (1 + (-x)^k)^2 = 1 + 8*Sum_{k>0} k * x^k / (1 + (-x)^k).
G.f. = s(2)^20/(s(1)*s(4))^8, where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
Fine gives another explicit formula for a(n) in terms of the divisors of n.
a(n) = 8*A046897(n), n > 0. - Ralf Stephan, Apr 02 2003
A096727(n) = (-1)^n * a(n). a(2*n) = A004011(n). a(2*n + 1) = A005879(n).
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = 8*(1-4^(1-s))*zeta(s)*zeta(s-1). [Ramanu. J. 7 (2003) 95-127, eq (3.2)]. - R. J. Mathar, Jul 02 2012
Average value is (Pi^2/2)*n + O(sqrt(n)). - Charles R Greathouse IV, Feb 17 2015
From Wolfdieter Lang, Jan 14 2016: (Start)
For n >= 1: a(n) = 8*Sum_{d | n} b(d)*d, with b(d) = 1 if d/4 is not an integer else 0. See, e.g., the Freitag-Busam reference, p. 392.
For n >= 1: a(n) = 8*sigma(n) if n is odd else 24*sigma(m(n)), where m(n) is the largest odd divisor of n (see A000265), and sigma is given in A000203. See the Moreno-Wagstaff reference, Theorem 2. 6 (Jacobi), p. 29. (End)
a(n) = (8/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A236923 Number of integer solutions to a^2 + b^2 + c^2 + 4*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 8, 36, 48, 16, 24, 78, 72, 24, 32, 84, 96, 48, 24, 108, 156, 40, 48, 192, 144, 48, 96, 186, 168, 80, 64, 180, 288, 64, 24, 288, 216, 96, 104, 228, 240, 112, 144, 252, 384, 88, 96, 468, 288, 96, 96, 342, 372, 144, 112, 324, 480, 144, 192, 480, 360, 120, 192, 372, 384, 208, 24, 504, 576, 136, 144, 576, 576, 144, 312, 444, 456, 248, 160, 576, 672
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2014

Keywords

Crossrefs

For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Maple
    with(numtheory);
    s:=n-> if whattype(n) = integer then sigma(n) else 0; fi;
    f:=proc(n) global s;
      if (n mod 4) = 0 then 8*s(n/4)-32*s(n/16)
    elif (n mod 4) = 2 then 12*s(n/2)
    elif (n mod 4) = 3 then 2*s(n)
    else 6*s(n);
    fi; end;
    [seq(f(n),n=1..100)];
    # a(0)=1 must be added separately
  • Mathematica
    EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, q^4] + O[q]^80 // CoefficientList[#, q]& (* Jean-François Alcover, Mar 04 2023, after Ilya Gutkovskiy *)

Formula

See Maple code.
G.f.: theta_3(q)^3*theta_3(q^4), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A236928 Number of integer solutions to a^2 + b^2 + c^2 + 2*d^2 = n.

Original entry on oeis.org

1, 6, 14, 20, 30, 40, 36, 48, 62, 42, 72, 100, 68, 120, 112, 48, 126, 108, 98, 180, 136, 160, 180, 144, 132, 126, 216, 200, 240, 280, 112, 192, 254, 120, 252, 320, 210, 360, 324, 144, 264, 252, 288, 420, 340, 280, 336, 288, 260, 342, 294, 360, 408, 520, 360, 240, 496
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2014

Keywords

Crossrefs

For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1, 2, 3, 4, 5, 6, 7, 8, 12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^2), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018
G.f.: 1 + 8*Sum{n >= 1} n*(q^n - q^(3*n) - q^(5*n) + q^(7*n))/(1 - q^(8*n)) - 2*Sum_{n >= 0} (-1)^((n^2+n)/2)*(2*n+1)q^(2*n+1)/(1 - q^(2*n+1)). See Zucker p. 5. Cf. A117000. - Peter Bala, Feb 25 2021

A236926 Number of integer solutions to a^2 + b^2 + c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 6, 12, 10, 18, 48, 40, 12, 60, 78, 24, 48, 70, 84, 120, 32, 66, 192, 84, 36, 144, 180, 120, 96, 136, 126, 168, 82, 84, 336, 200, 60, 252, 288, 96, 96, 234, 228, 360, 140, 120, 480, 144, 84, 336, 336, 240, 192, 310, 258, 252, 128, 252, 624, 400, 96, 408, 540, 168
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2014

Keywords

Crossrefs

Cf. A236924.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^3), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A236930 Number of integer solutions to a^2 + b^2 + c^2 + 5*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 6, 26, 36, 24, 28, 42, 72, 72, 8, 48, 108, 48, 54, 64, 84, 120, 26, 72, 144, 88, 84, 126, 216, 80, 24, 180, 156, 192, 92, 96, 288, 144, 42, 144, 240, 144, 168, 252, 144, 168, 72, 182, 396, 184, 72, 258, 372, 192, 48, 208, 360, 312, 252, 160, 360, 360, 48
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2014

Keywords

Crossrefs

For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Maple
    See A236924.
  • Mathematica
    Join[{1},Table[Length[Reduce[a^2+b^2+c^2+5d^2==n,{a,b,c,d},Integers]],{n,60}]] (* Harvey P. Dale, Jul 02 2017 *)

Formula

G.f.: theta_3(q)^3*theta_3(q^5), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A236932 Number of integer solutions to a^2 + b^2 + c^2 + 7*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 2, 24, 54, 40, 36, 56, 72, 48, 24, 66, 96, 84, 40, 72, 144, 24, 12, 120, 102, 120, 80, 98, 132, 72, 64, 84, 240, 160, 48, 198, 180, 120, 72, 136, 240, 240, 84, 84, 312, 120, 96, 248, 246, 180, 96, 216, 228, 240, 80, 156, 360, 216, 120, 168
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2014

Keywords

Crossrefs

For number of solutions to a^2 + b^2 + c^2 + k*d^2 = n for k = 1, 2, 3, 4, 5, 6, 7, 8, 12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^7), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A236933 Number of integer solutions to a^2 + b^2 + c^2 + 12*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 10, 36, 72, 16, 18, 96, 84, 24, 48, 108, 72, 48, 40, 78, 168, 32, 12, 168, 120, 48, 60, 144, 96, 48, 78, 84, 216, 64, 24, 240, 144, 24, 48, 168, 144, 96, 70, 114, 252, 64, 84, 312, 240, 48, 120, 252, 168, 120, 32
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2014

Keywords

Crossrefs

Different from A005875.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^12), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018

A236927 Number of integer solutions to a^2 + b^2 + c^2 + 8*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 0, 14, 42, 48, 40, 20, 72, 96, 0, 30, 108, 84, 72, 40, 96, 120, 0, 36, 126, 144, 80, 48, 168, 96, 0, 62, 120, 216, 128, 42, 216, 216, 0, 72, 252, 192, 168, 100, 168, 288, 0, 68, 342, 252, 144, 120, 312, 240, 0, 112, 216, 336, 232, 48, 360, 384
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2014

Keywords

Crossrefs

Cf. A236924.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^8), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 12, 8, 18, 14, 4, 28, 12, 24, 32, 0, 34, 20, 14, 28, 4, 32, 44, 40, 28, 10, 40, 56, 64, 72, 8, 48, 66, 24, 68, 8, 46, 88, 60, 32, 4, 52, 64, 116, 76, 12, 64, 72, 60, 82, 26, 72, 104, 104, 88, 8, 112, 56, 136, 140, 8, 136, 96, 72, 98, 16, 72, 132
Offset: 0

Views

Author

Jianing Song, Sep 28 2018

Keywords

Comments

Ramanujan (1917) claimed that there are exactly 55 possible choice for a <= b <= c <= d such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all natural numbers, but L. E. Dickson (1927) has pointed out that Ramanujan has overlooked the fact that (1, 2, 5, 5) does not represent 15. Consequently, there are only 54 forms. This sequence is related to the form (1, 2, 5, 5). As is proven, a(n) = 0 iff n = 15.
There are also many (a, b, c, d) other than this such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all but finitely many natural numbers. For example, x^2 + y^2 + 5*z^2 + 5*w^2 represents all natural numbers except for 3 (cf. A236929); x^2 + y^2 + z^2 + d*w^2 (d == 2 (mod 4) or d = 9, 17, 25, 36, 68, 100 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 7) and < d; x^2 + 2*y^2 + 6*z^2 + d*w^2 (d == 2 (mod 4) or d = 11, 19 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 5) and < d.

Examples

			a(5) = 4 because 0^2 + 2*0^2 + 5*0^2 + 5*1^2 = 0^2 + 2*0^2 + 5*0^2 + 5*(-1)^2 = 0^2 + 2*0^2 + 5*1^2 + 5*0^2 = 0^2 + 2*0^2 + 5*(-1)^2 + 5*0^2 = 5 and these are the only four solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = 5.
		

References

  • J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.

Crossrefs

From Seiichi Manyama, Oct 07 2018: (Start)
54 possible choice:
k | a, b, c, d | Number of solutions
------+-----------------+--------------------
1 | 1, 1, 1, 1 | A000118
2 | 1, 1, 1, 2 | A236928
3 | 1, 1, 1, 3 | A236926
4 | 1, 1, 1, 4 | A236923
5 | 1, 1, 1, 5 | A236930
6 | 1, 1, 1, 6 | A236931
7 | 1, 1, 1, 7 | A236932
8 | 1, 1, 2, 2 | A097057
9 | 1, 1, 2, 3 | A320124
10 | 1, 1, 2, 4 | A320125
11 | 1, 1, 2, 5 | A320126
12 | 1, 1, 2, 6 | A320127
13 | 1, 1, 2, 7 | A320128
14 | 1, 1, 2, 8 | A320130
15 | 1, 1, 2, 9 | A320131
16 | 1, 1, 2, 10 | A320132
17 | 1, 1, 2, 11 | A320133
18 | 1, 1, 2, 12 | A320134
19 | 1, 1, 2, 13 | A320135
20 | 1, 1, 2, 14 | A320136
21 | 1, 1, 3, 3 | A034896
22 | 1, 1, 3, 4 | A272364
23 | 1, 1, 3, 5 | A320147
24 | 1, 1, 3, 6 | A320148
25 | 1, 2, 2, 2 | A320149
26 | 1, 2, 2, 3 | A320150
27 | 1, 2, 2, 4 | A236924
28 | 1, 2, 2, 5 | A320151
29 | 1, 2, 2, 6 | A320152
30 | 1, 2, 2, 7 | A320153
31 | 1, 2, 3, 3 | A320138
32 | 1, 2, 3, 4 | A320139
33 | 1, 2, 3, 5 | A320140
34 | 1, 2, 3, 6 | A033712
35 | 1, 2, 3, 7 | A320188
36 | 1, 2, 3, 8 | A320189
37 | 1, 2, 3, 9 | A320190
38 | 1, 2, 3, 10 | A320191
39 | 1, 2, 4, 4 | A320193
40 | 1, 2, 4, 5 | A320194
41 | 1, 2, 4, 6 | A320195
42 | 1, 2, 4, 7 | A320196
43 | 1, 2, 4, 8 | A033720
44 | 1, 2, 4, 9 | A320197
45 | 1, 2, 4, 10 | A320198
46 | 1, 2, 4, 11 | A320199
47 | 1, 2, 4, 12 | A320200
48 | 1, 2, 4, 13 | A320201
49 | 1, 2, 4, 14 | A320202
50 | 1, 2, 5, 6 | A320163
51 | 1, 2, 5, 7 | A320164
52 | 1, 2, 5, 8 | A320165
53 | 1, 2, 5, 9 | A320166
54 | 1, 2, 5, 10 | A033722
(End)

Programs

  • Maple
    JT := (k, n) -> JacobiTheta3(0, x^k)^n:
    A319822List := proc(len) series(JT(1,1)*JT(2,1)*JT(5,2), x, len+1);
    seq(coeff(%, x, j), j=0..len) end: A319822List(67); # Peter Luschny, Oct 01 2018
  • Mathematica
    CoefficientList[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[ 3, 0, q^5]^2 + O[q]^100, q] (* Jean-François Alcover, Jun 15 2019 *)
  • PARI
    A004018(n) = if(n, 4*sumdiv(n,d,kronecker(-4,d)), 1);
    A033715(n) = if(n, 2*sumdiv(n,d,kronecker(-2,d)), 1);
    a(n) = my(i=0); for(k=0, n\5, i+=A004018(k)*A033715(n-5*k)); i
    
  • PARI
    N=99; q='q+O('q^N);
    gf = (eta(q^2)*eta(q^4))^3*eta(q^10)^10/(eta(q)*eta(q^5)^2*eta(q^8)*eta(q^20)^2)^2;
    Vec(gf) \\ Altug Alkan, Oct 01 2018
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1, 2, 5, 5])
    Q.theta_series(68).list() # Peter Luschny, Oct 01 2018

Formula

a(n) = Sum_{k=0..floor(n/5)} A004018(k)*A033715(n-5*k).
G.f.: theta_3(q)*theta_3(q^2)*theta_3(q^5)^2, where theta_3() is the Jacobi theta function.
Showing 1-9 of 9 results.