cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A237270 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 12, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 28, 7, 7, 12, 12, 8, 8, 8, 31, 9, 9, 39, 10, 10, 42, 11, 5, 5, 11, 18, 18, 12, 12, 60, 13, 5, 13, 21, 21, 14, 6, 6, 14, 56, 15, 15, 72, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 12, 18, 91, 19, 19, 30, 30, 20, 8, 8, 20, 90
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2014

Keywords

Comments

T(n,k) is the number of cells in the k-th region of the n-th set of regions in a diagram of the symmetry of sigma(n), see example.
Row n is a palindromic composition of sigma(n).
Row sums give A000203.
Row n has length A237271(n).
In the row 2n-1 of triangle both the first term and the last term are equal to n.
If n is an odd prime then row n is [m, m], where m = (1 + n)/2.
The connection with A196020 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A239660 --> this sequence.
For the boundary segments in an octant see A237591.
For the boundary segments in a quadrant see A237593.
For the boundary segments in the spiral see also A239660.
For the parts in every quadrant of the spiral see A239931, A239932, A239933, A239934.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
T(n,k) is also the area of the k-th terrace, from left to right, at the n-th level, starting from the top, of the stepped pyramid described in A245092 (see Links section). - Omar E. Pol, Aug 14 2018

Examples

			Illustration of the first 27 terms as regions (or parts) of a spiral constructed with the first 15.5 rows of A239660:
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.             12 _| |                           |
.               |_ _|  _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |    9 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |      _ _ _ _          |_  |         | |
.     | |     |  _ _| 12 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|7   _ _| |     | |     | |
.   | |     | |    4    |_                 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| | 15 _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                       |      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|28  _| |
.           |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.          8  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                               |  _ _|  31
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.
.
[For two other drawings of the spiral see the links. - _N. J. A. Sloane_, Nov 16 2020]
If the sequence does not contain negative terms then its terms can be represented in a quadrant. For the construction of the diagram we use the symmetric Dyck paths of A237593 as shown below:
---------------------------------------------------------------
Triangle         Diagram of the symmetry of sigma (n = 1..24)
---------------------------------------------------------------
.              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1;            |_| | | | | | | | | | | | | | | | | | | | | | | |
3;            |_ _|_| | | | | | | | | | | | | | | | | | | | | |
2, 2;         |_ _|  _|_| | | | | | | | | | | | | | | | | | | |
7;            |_ _ _|    _|_| | | | | | | | | | | | | | | | | |
3, 3;         |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | |
12;           |_ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | |
4, 4;         |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | |
15;           |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | |
5, 3, 5;      |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | |
9, 9;         |_ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | |
6, 6;         |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | |
28;           |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| |
7, 7;         |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|
12, 12;       |_ _ _ _ _ _ _ _| |     |     |  _|_|   |* * * *
8, 8, 8;      |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |* * * *
31;           |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|* * * *
9, 9;         |_ _ _ _ _ _ _ _ _| | |_ _ _|      _|* * * * * *
39;           |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|* * * * * * *
10, 10;       |_ _ _ _ _ _ _ _ _ _| | |       |* * * * * * * *
42;           |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|* * * * * * * *
11, 5, 5, 11; |_ _ _ _ _ _ _ _ _ _ _| | |* * * * * * * * * * *
18, 18;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
12, 12;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
60;           |_ _ _ _ _ _ _ _ _ _ _ _ _|* * * * * * * * * * *
...
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n), the sum of all divisors of all positive integers <= n, hence the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n).
For n = 9 the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 9 is [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
For n = 24 the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] and the 23rd row of A237593 is [12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12] therefore between both symmetric Dyck paths there are only one region (or part) of size 60, so row 24 is 60.
The sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = A000203(24) = 60. On the other hand the sum of the parts of the symmetric representation of sigma(24) is 60, equaling the sum of divisors of 24.
Note that the number of *'s in the diagram is 24^2 - A024916(24) = 576 - 491 = A004125(24) = 85.
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of triangle:  [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A239387 and also A296508, A280851. (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := Ceiling[(n + 1)/k - (k + 1)/2] (* from A235791 *)
    path[n_] := Module[{c = Floor[(Sqrt[8n + 1] - 1)/2], h, r, d, rd, k, p = {{0, n}}}, h = Map[T[n, #] - T[n, # + 1] &, Range[c]]; r = Join[h, Reverse[h]]; d = Flatten[Table[{{1, 0}, {0, -1}}, {c}], 1];
    rd = Transpose[{r, d}]; For[k = 1, k <= 2c, k++, p = Join[p, Map[Last[p] + rd[[k, 2]] * # &, Range[rd[[k, 1]]]]]]; p]
    segments[n_] := SplitBy[Map[Min, Drop[Drop[path[n], 1], -1] - path[n - 1]], # == 0 &]
    a237270[n_] := Select[Map[Apply[Plus, #] &, segments[n]], # != 0 &]
    Flatten[Map[a237270, Range[40]]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)

Formula

T(n, k) = (A384149(n, k) + A384149(n, m+1-k))/2, where m = A237271(n) is the row length. (conjectured) - Peter Munn, Jun 01 2025

Extensions

Drawing of the spiral extended by Omar E. Pol, Nov 22 2020

A237591 Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<=A003056(n)).

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

The original name was: Triangle read by rows: T(n,k) = A235791(n,k) - A235791(n,k+1), assuming that the virtual right border of triangle A235791 is A000004.
T(n,k) is also the length of the k-th segment in a zig-zag path on the first quadrant of the square grid, connecting the point (n, 0) with the point (m, m), starting with a segment in vertical direction, where m <= n.
Conjecture: the area of the polygon defined by the x-axis, this zig-zag path and the diagonal [(0, 0), (m, m)], is equal to A024916(n)/2, one half of the sum of all divisors of all positive integers <= n. Therefore the reflected polygon, which is adjacent to the y-axis, with the zig-zag path connecting the point (0, n) with the point (m, m), has the same property. And so on for each octant in the four quadrants.
For the representation of A024916 and A000203 we use two octants, for example: the first octant and the second octant, or the 6th octant and the 7th octant, etc., see A237593.
At least up to n = 128, two zig-zag paths never cross (checked by hand).
The finite sequence formed by the n-th row of triangle together with its mirror row gives the n-th row of triangle A237593.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> this sequence --> A237593 --> A239660 --> A237270 --> A237271.
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014. (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
From Hartmut F. W. Hoft, Apr 07 2014: (Start)
The row sum is A235791(n,1) - A235791(n,floor((sqrt(8n+1)-1)/2)+1) = n - 0.
Mathematica function has been written to check the conjecture as well as non-crossing zig-zag paths (Dyck paths rotated by 90 degrees) up through n=30000 (same applies to A237593). (End)
The n-th zig-zag path ending at the point (m, m), where m = A240542(n). - Omar E. Pol, Apr 16 2014
From Omar E. Pol, Aug 23 2015: (Start)
n is an odd prime if and only if T(n,2) = 1 + T(n-1,2) and T(n,k) = T(n-1,k) for the rest of the values of k.
The elements of the n-th row of triangle together with the elements of the n-th row of triangle A261350 give the n-th row of triangle A237593.
T(n,k) is also the area (or the number of cells) of the k-th vertical side at the n-th level (starting from the top) in the left hand part of the front view of the stepped pyramid described in A245092, see Example section.
(End)
From Omar E. Pol, Nov 19 2015: (Start)
T(n,k) is also the number of cells between the k-th and the (k+1)st line segments (from left to right) in the n-th row of the diagram as shown in Example section.
Note that the number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of odd divisors of n. (End)
Conjecture: the values f(n,k) in the n-th row of the triangle are either 1 or 2 for all k with ceiling((sqrt(4*n+1)-1)/2) <= k <= floor((sqrt(8*n+1)-1)/2) = r(n), the length of the n-th row, though the lower bound need not be minimal; tested through 2500000. See also A285356. - Hartmut F. W. Hoft, Apr 17 2017
Conjecture: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts. - Omar E. Pol, Apr 30 2017
From Omar E. Pol, Aug 31 2021: (Start)
It appears that T(n,2)/T(n,1) converges to 1/3.
It appears that T(n,3)/T(n,2) converges to 1/2.
It appears that T(n,4)/T(n,3) converges to 3/5.
It appears that T(n,5)/T(n,4) converges to 2/3. (End)
In other words: T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(n). - Omar E. Pol, Sep 08 2021

Examples

			Triangle begins:
   1;
   2;
   2, 1;
   3, 1;
   3, 2;
   4, 1, 1;
   4, 2, 1;
   5, 2, 1;
   5, 2, 2;
   6, 2, 1, 1;
   6, 3, 1, 1;
   7, 2, 2, 1;
   7, 3, 2, 1;
   8, 3, 1, 2;
   8, 3, 2, 1, 1;
   9, 3, 2, 1, 1;
   9, 4, 2, 1, 1;
  10, 3, 2, 2, 1;
  10, 4, 2, 2, 1;
  11, 4, 2, 1, 2;
  11, 4, 3, 1, 1, 1;
  12, 4, 2, 2, 1, 1;
  12, 5, 2, 2, 1, 1;
  13, 4, 3, 2, 1, 1;
  13, 5, 3, 1, 2, 1;
  14, 5, 2, 2, 2, 1;
  14, 5, 3, 2, 1, 2;
  15, 5, 3, 2, 1, 1, 1;
  ...
For n = 10 the 10th row of triangle A235791 is [10, 4, 2, 1] so row 10 is [6, 2, 1, 1].
From _Omar E. Pol_, Aug 23 2015: (Start)
Illustration of initial terms:
  Row                                                         _
   1                                                        _|1|
   2                                                      _|2 _|
   3                                                    _|2  |1|
   4                                                  _|3   _|1|
   5                                                _|3    |2 _|
   6                                              _|4     _|1|1|
   7                                            _|4      |2  |1|
   8                                          _|5       _|2 _|1|
   9                                        _|5        |2  |2 _|
  10                                      _|6         _|2  |1|1|
  11                                    _|6          |3   _|1|1|
  12                                  _|7           _|2  |2  |1|
  13                                _|7            |3    |2 _|1|
  14                              _|8             _|3   _|1|2 _|
  15                            _|8              |3    |2  |1|1|
  16                          _|9               _|3    |2  |1|1|
  17                        _|9                |4     _|2 _|1|1|
  18                      _|10                _|3    |2  |2  |1|
  19                    _|10                 |4      |2  |2 _|1|
  20                  _|11                  _|4     _|2  |1|2 _|
  21                _|11                   |4      |3   _|1|1|1|
  22              _|12                    _|4      |2  |2  |1|1|
  23            _|12                     |5       _|2  |2  |1|1|
  24          _|13                      _|4      |3    |2 _|1|1|
  25        _|13                       |5        |3   _|1|2  |1|
  26      _|14                        _|5       _|2  |2  |2 _|1|
  27    _|14                         |5        |3    |2  |1|2 _|
  28   |15                           |5        |3    |2  |1|1|1|
  ...
Also the diagram represents the left part of the front view of the pyramid described in A245092. For the other half front view see A261350. For more information about the pyramid and the symmetric representation of sigma see A237593. (End)
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
.                           _
                           | |
                           | |
                           | |
                           | |
                           | |
                      _ _ _| |
                    _|    _ _|
                  _|     |
                 |      _|
                 |  _ _|1
      _ _ _ _ _ _| |  2
     |_ _ _ _ _ _ _|2
            7
.
The lengths of the successive line segments from the first vertex to the central vertex of the largest Dyck path are [7, 2, 2, 1] respectively, the same as the 12th row of triangle. (End)
		

Crossrefs

Row n has length A003056(n) hence column k starts in row A000217(k).
Row sums give A000027.
Column 1 is A008619, n >= 1.
Right border gives A042974.

Programs

  • Mathematica
    row[n_]:= Floor[(Sqrt[8*n+1] -1)/2];  f[n_,k_]:= Ceiling[(n+1)/k-(k+1)/2] - Ceiling[(n+1)/(k+1)-(k+2)/2];
    Table[f[n,k],{n,1,50},{k,1,row[n]}]//Flatten
    (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
    row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]);} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = ceiling((n+1)/k - (k+1)/2) - ceiling((n+1)/(k+1) - (k+2)/2), for 1 <= n and 1 <= k <= floor((sqrt(8n+1)-1)/2). - Hartmut F. W. Hoft, Apr 07 2014

Extensions

3 more rows added by Omar E. Pol, Aug 23 2015
New name from a comment dated Apr 30 2017. - Omar E. Pol, Jun 18 2023

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
From Omar E. Pol, Dec 31 2016: (Start)
We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the pyramid see A237593 and all its related sequences. (End)

Examples

			Illustration of initial terms:
----------------------------------------------------------------------
a(n)                             Diagram
----------------------------------------------------------------------
0    _
1   |_|\ _
2    \ _| |\ _
3     |_ _| | |\ _
4      \ _ _|_| | |\ _
4       |_ _|  _| | | |\ _
6        \ _ _|  _| | | | |\ _
7         |_ _ _|  _|_| | | | |\ _
8          \ _ _ _|  _ _| | | | | |\ _
6           |_ _ _| |    _| | | | | | |\ _
10           \ _ _ _|  _|  _|_| | | | | | |\ _
12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
24                              |_ _ _ _ _ _ _ _| | |  _ _|
30                               \ _ _ _ _ _ _ _ _| | |
31                                |_ _ _ _ _ _ _ _ _| |
32                                 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level                              _ _
1                                _| | |_
2                              _|  _|_  |_
3                            _|   | | |   |_
4                          _|    _| | |_    |_
5                        _|     |  _|_  |     |_
6                      _|      _| | | | |_      |_
7                    _|       |   | | |   |       |_
8                  _|        _|  _| | |_  |_        |_
9                _|         |   |  _|_  |   |         |_
10             _|          _|   | | | | |   |_          |_
11           _|           |    _| | | | |_    |           |_
12         _|            _|   |   | | |   |   |_            |_
13       _|             |     |  _| | |_  |     |             |_
14     _|              _|    _| |  _|_  | |_    |_              |_
15   _|               |     |   | | | | |   |     |               |_
16  |                 |     |   | | | | |   |     |                 |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1      1   =      1      |_| | | | | | | | | | | | | | | |
2      3   =      3      |_ _|_| | | | | | | | | | | | | |
3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
16    31   =     31      |_ _ _ _ _ _ _ _ _|
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
    Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
    With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(2*n-1) + a(2n) = A224880(n).

A244050 Partial sums of A243980.

Original entry on oeis.org

4, 20, 52, 112, 196, 328, 492, 716, 992, 1340, 1736, 2244, 2808, 3468, 4224, 5104, 6056, 7164, 8352, 9708, 11192, 12820, 14544, 16508, 18596, 20852, 23268, 25908, 28668, 31716, 34892, 38320, 41940, 45776, 49804, 54196, 58740, 63524, 68532, 73900
Offset: 1

Views

Author

Omar E. Pol, Jun 18 2014

Keywords

Comments

a(n) is also the volume of a special stepped pyramid with n levels related to the symmetric representation of sigma. Note that starting at the top of the pyramid, the total area of the horizontal regions at the n-th level is equal to A239050(n), and the total area of the vertical regions at the n-th level is equal to 8*n.
From Omar E. Pol, Sep 19 2015: (Start)
Also, consider that the area of the central square in the top of the pyramid is equal to 1, so the total area of the horizontal regions at the n-th level starting from the top is equal to sigma(n) = A000203(n), and the total area of the vertical regions at the n-th level is equal to 2*n.
Also note that this stepped pyramid can be constructed with four copies of the stepped pyramid described in A245092 back-to-back (one copy in every quadrant). (End)
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and the nonzero terms of A008586.
Convolution of A074400 and the nonzero terms of A005843.
Convolution of A340793 and the nonzero terms of A046092.
Convolution of A239050 and A000027.
(End)

Examples

			From _Omar E. Pol_, Aug 29 2015: (Start)
Illustration of the top view of the stepped pyramid with 16 levels. The pyramid is formed of 5104 unit cubes:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593 and A245092.
(End)
		

Crossrefs

Programs

  • Magma
    [4*(&+[(n-k+1)*DivisorSigma(1,k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Apr 07 2019
    
  • Mathematica
    a[n_] := 4 Sum[(n - k + 1) DivisorSigma[1, k], {k, n}]; Array[a, 40] (* Robert G. Wilson v, Aug 06 2018 *)
    Nest[Accumulate,4*DivisorSigma[1,Range[50]],2] (* Harvey P. Dale, Sep 07 2022 *)
  • PARI
    a(n) = 4*sum(k=1, n, sigma(k)*(n-k+1)); \\ Michel Marcus, Aug 07 2018
    
  • Python
    from math import isqrt
    def A244050(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1))<<1)//3 # Chai Wah Wu, Oct 22 2023
  • Sage
    [4*sum(sigma(k)*(n-k+1) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Apr 07 2019
    

Formula

a(n) = 4*A175254(n).

A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Mar 24 2014

Keywords

Comments

For the construction of this sequence also we can start from A235791.
This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019

Examples

			Triangle begins (first 15.5 rows):
1, 1, 1, 1;
2, 2, 2, 2;
2, 1, 1, 2, 2, 1, 1, 2;
3, 1, 1, 3, 3, 1, 1, 3;
3, 2, 2, 3, 3, 2, 2, 3;
4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
.
Illustration of initial terms as an infinite Dyck path (row n = 1..4):
.
.                            /\/\    /\/\
.       /\  /\  /\/\  /\/\  /    \  /    \
.  /\/\/  \/  \/    \/    \/      \/      \
.
.
Illustration of initial terms for the construction of a spiral related to sigma:
.
.  row 1     row 2          row 3           row 4
.                                          _ _ _
.                                               |_
.             _ _                                 |
.   _ _      |                                    |
.  |   |     |                                    |
.            |         |           |              |
.            |_ _      |_         _|              |
.                        |_ _ _ _|               _|
.                                          _ _ _|
.
.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
.
The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
.
Illustration of the spiral constructed with the first 15.5 rows of triangle:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.                _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |      _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|    _| |
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                             28|  _ _|
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
Diagram extended by _Omar E. Pol_, Aug 23 2018
		

Crossrefs

Row n has length 4*A003056(n).
The sum of row n is equal to 4*n = A008586(n).
Row n is a palindromic composition of 4*n = A008586(n).
Both column 1 and right border are A008619, n >= 1.
The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.

A239934 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(4n).

Original entry on oeis.org

7, 15, 28, 31, 42, 60, 56, 63, 91, 90, 42, 42, 124, 49, 49, 120, 168, 127, 63, 63, 195, 70, 70, 186, 224, 180, 84, 84, 252, 217, 210, 280, 248, 105, 105, 360, 112, 112, 255
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2014

Keywords

Comments

Row n is a palindromic composition of sigma(4n).
Row n is also the row 4n of A237270.
Row n has length A237271(4n).
Row sums give A193553.
First differs from A193553 at a(11).
Also row n lists the parts of the symmetric representation of sigma in the n-th arm of the fourth quadrant of the spiral described in A239660, see example.
For the parts of the symmetric representation of sigma(4n-3), see A239931.
For the parts of the symmetric representation of sigma(4n-2), see A239932.
For the parts of the symmetric representation of sigma(4n-1), see A239933.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			The irregular triangle begins:
    7;
   15;
   28;
   31;
   42;
   60;
   56;
   63;
   91;
   90;
   42, 42;
  124;
   49, 49;
  120;
  168;
  ...
Illustration of initial terms in the fourth quadrant of the spiral described in A239660:
.
.           7       15      28      31      42      60      56      63
.           _       _       _       _       _       _       _       _
.          | |     | |     | |     | |     | |     | |     | |     | |
.         _| |     | |     | |     | |     | |     | |     | |     | |
.     _ _|  _|     | |     | |     | |     | |     | |     | |     | |
.    |_ _ _|    _ _| |     | |     | |     | |     | |     | |     | |
.             _|  _ _|     | |     | |     | |     | |     | |     | |
.            |  _|    _ _ _| |     | |     | |     | |     | |     | |
.     _ _ _ _| |    _|    _ _|     | |     | |     | |     | |     | |
.    |_ _ _ _ _|  _|     |    _ _ _| |     | |     | |     | |     | |
.                |      _|   |  _ _ _|     | |     | |     | |     | |
.                |  _ _|    _| |    _ _ _ _| |     | |     | |     | |
.     _ _ _ _ _ _| |      _|  _|   |  _ _ _ _|     | |     | |     | |
.    |_ _ _ _ _ _ _|  _ _|  _|  _ _| |    _ _ _ _ _| |     | |     | |
.                    |  _ _|  _|    _|   |    _ _ _ _|     | |     | |
.                    | |     |     |  _ _|   |    _ _ _ _ _| |     | |
.     _ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |   |  _ _ _ _ _|     | |
.    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|   | |    _ _ _ _ _ _| |
.                        | |     |      _|    _ _| |   |  _ _ _ _ _ _|
.                        | |  _ _|    _|  _ _|  _ _|   | |
.     _ _ _ _ _ _ _ _ _ _| | |       |   |    _|    _ _| |
.    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|  _|  _|     |  _ _|
.                            | |       |  _|      _| |
.                            | |  _ _ _| |      _|  _|
.     _ _ _ _ _ _ _ _ _ _ _ _| | |  _ _ _|  _ _|  _|
.    |_ _ _ _ _ _ _ _ _ _ _ _ _| | |       |  _ _|
.                                | |  _ _ _| |
.                                | | |  _ _ _|
.     _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.    |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                    | |
.                                    | |
.     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.    |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
For n = 7 we have that 4*7 = 28 and the 28th row of A237593 is [15, 5, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 5, 15] and the 27th row of A237593 is [14, 5, 3, 2, 1, 2, 2, 1, 2, 3, 5, 14] therefore between both Dyck paths there are only one region (or part) of size 56, so row 7 is 56.
The sum of divisors of 28 is 1 + 2 + 4 + 7 + 14 + 28 = A000203(28) = 56. On the other hand the sum of the parts of the symmetric representation of sigma(28) is 56, equaling the sum of divisors of 28.
For n = 11 we have that 4*11 = 44 and the 44th row of A237593 is [23, 8, 4, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 8, 23] and the 43rd row of A237593 is [22, 8, 4, 3, 2, 1, 2, 1, 1, 2, 1, 2, 3, 4, 8, 23] therefore between both Dyck paths there are two regions (or parts) of sizes [42, 42], so row 11 is [42, 42].
The sum of divisors of 44 is 1 + 2 + 4 + 11 + 22 + 44 = A000203(44) = 84. On the other hand the sum of the parts of the symmetric representation of sigma(44) is 42 + 42 = 84, equaling the sum of divisors of 44.
		

Crossrefs

A296508 Irregular triangle read by rows: T(n,k) is the size of the subpart that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned subpart is already associated to a previous peak or if there is no subpart adjacent to the k-th peak, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 11, 1, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 23, 5, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 7, 1, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 35, 2, 0, 2, 0, 10, 0, 0, 0, 10, 39, 0, 3, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 47, 13, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

Conjecture: row n is formed by the odd-indexed terms of the n-th row of triangle A280850 together with the even-indexed terms of the same row but listed in reverse order. Examples: the 15th row of A280850 is [8, 8, 7, 0, 1] so the 15th row of this triangle is [8, 7, 1, 0, 8]. The 75th row of A280850 is [38, 38, 21, 0, 3, 3, 0, 0, 0, 21, 0] so the 75h row of this triangle is [38, 21, 3, 0, 0, 0, 21, 0, 3, 0, 38].
For the definition of "subparts" see A279387.
For more information about the mentioned Dyck paths see A237593.
T(n,k) could be called the "charge" of the k-th peak of the largest Dyck path of the symmetric representation of sigma(n).
The number of zeros in row n is A238005(n). - Omar E. Pol, Sep 11 2021

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  11,  1,  0;
   4,  0,  4;
  15,  0,  0;
   5,  3,  5;
   9,  0,  9,  0;
   6,  0,  0,  6;
  23,  5,  0,  0;
   7,  0,  0,  7;
  12,  0, 12,  0;
   8,  7,  1,  0,  8;
  31,  0,  0,  0,  0;
   9,  0,  0,  0,  9;
  35,  2,  0,  2,  0;
  10,  0,  0,  0, 10;
  39,  0,  3,  0,  0;
  11,  5,  0,  5,  0, 11;
  18,  0,  0,  0, 18,  0;
  12,  0,  0,  0,  0, 12;
  47, 13,  0,  0,  0,  0;
  13,  0,  5,  0,  0, 13;
  21,  0,  0,  0  21,  0;
  14,  6,  0,  6,  0, 14;
  55,  0,  0,  1,  0,  0,  0;
  ...
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) is constructed in the third quadrant as shown below in Figure 1:
.    _                                  _
.   | |                                | |
.   | |                                | |
.   | |                                | |
. 8 | |                                | |
.   | |                                | |
.   | |                                | |
.   | |                                | |
.   |_|_ _ _                           |_|_ _ _
.         | |_ _                      8      | |_ _
.         |_    |                            |_ _  |
.           |_  |_                          7  |_| |_
.          8  |_ _|                           1  |_ _|
.                 |                             0    |
.                 |_ _ _ _ _ _ _ _                   |_ _ _ _ _ _ _ _
.                 |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                         8                         8
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four subparts,
.   8 cells, so the 15th row of        so the 15th row of this triangle is
.   triangle A237270 is [8, 8, 8].     [8, 7, 1, 0, 8]. See also below.
.
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.              0 _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _ 0
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_ 0
.    0 _ _ _| |    0 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |    0 _ _| |   11 _ _ _ _          |_  |         | |
.     | |     |  _ _|  1 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |    0 _|_| |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|  0 _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|0    | |     | |
.   | |     |_|_ _     0  |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |  0 _|  _ _ _|0    | |
.   |_|_ _ _     0  |_   4        |_ _ _ _ _|  _|  _| |    _ _ _| |
.  8      | |_ _   0  |                     15|  _|  _|   |  _ _ _|
.         |_ _  |     |_ _ _ _ _ _            | |_ _|  0 _| |      0
.        7  |_| |_    |_ _ _ _ _ _|_ _ _ _ _ _| |    5 _|  _|
.          1  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|  0
.            0    |                             23|  _ _|  0
.                 |_ _ _ _ _ _ _ _                | |    0
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains 30 subparts equaling A060831(16), the total number of partitions of all positive integers <= 16 into consecutive parts.
For the construction of the spiral see A239660.
From _Omar E. Pol_, Nov 26 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem). For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described n A280850 and the conjecture applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351:   [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of this seq:  [              8,      7,    1,    0,      8              ]
The 15th row
of A280851:   [              8,      7,    1,            8              ]
.
(End)
		

Crossrefs

Row sums give A000203.
Row n has length A003056(n).
Column k starts in row A000217(k).
Nonzero terms give A280851.
The number of nonzero terms in row n is A001227(n).
The triangle with n rows contain A060831(n) nonzero terms.

A239929 Numbers n with the property that the symmetric representation of sigma(n) has two parts.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 92, 94, 97, 101, 102, 103, 106, 107, 109, 113, 114, 116, 118, 122, 124, 127, 131, 134, 136, 137, 138
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

All odd primes are in the sequence because the parts of the symmetric representation of sigma(prime(i)) are [m, m], where m = (1 + prime(i))/2, for i >= 2.
There are no odd composite numbers in this sequence.
First differs from A173708 at a(13).
Since sigma(p*q) >= 1 + p + q + p*q for odd p and q, the symmetric representation of sigma(p*q) has more parts than the two extremal ones of size (p*q + 1)/2; therefore, the above comments are true. - Hartmut F. W. Hoft, Jul 16 2014
From Hartmut F. W. Hoft, Sep 16 2015: (Start)
The following two statements are equivalent:
(1) The symmetric representation of sigma(n) has two parts, and
(2) n = q * p where q is in A174973, p is prime, and 2 * q < p.
For a proof see the link and also the link in A071561.
This characterization allows for much faster computation of numbers in the sequence - function a239929F[] in the Mathematica section - than computations based on Dyck paths. The function a239929Stalk[] gives rise to the associated irregular triangle whose columns are indexed by A174973 and whose rows are indexed by A065091, the odd primes. (End)
From Hartmut F. W. Hoft, Dec 06 2016: (Start)
For the respective columns of the irregular triangle with fixed m: k = 2^m * p, m >= 1, 2^(m+1) < p and p prime:
(a) each number k is representable as the sum of 2^(m+1) but no fewer consecutive positive integers [since 2^(m+1) < p].
(b) each number k has 2^m as largest divisor <= sqrt(k) [since 2^m < sqrt(k) < p].
(c) each number k is of the form 2^m * p with p prime [by definition].
m = 1: (a) A100484 even semiprimes (except 4 and 6)
(b) A161344 (except 4, 6 and 8)
(c) A001747 (except 2, 4 and 6)
m = 2: (a) A270298
(b) A161424 (except 16, 20, 24, 28 and 32)
(c) A001749 (except 8, 12, 20 and 28)
m = 3: (a) A270301
(b) A162528 (except 64, 72, 80, 88, 96, 104, 112 and 128)
(c) sequence not in OEIS
b(i,j) = A174973(j) * {1,5) mod 6 * A174973(j), for all i,j >= 1; see A091999 for j=2. (End)

Examples

			From _Hartmut F. W. Hoft_, Sep 16 2015: (Start)
a(23) = 52 = 2^2 * 13 = q * p with q = 4 in A174973 and 8 < 13 = p.
a(59) = 136 = 2^3 * 17 = q * p with q = 8 in A174973 and 16 < 17 = p.
The first six columns of the irregular triangle through prime 37:
   1    2    4    6    8   12 ...
  -------------------------------
   3
   5   10
   7   14
  11   22   44
  13   26   52   78
  17   34   68  102  136
  19   38   76  114  152
  23   46   92  138  184
  29   58  116  174  232  348
  31   62  124  186  248  372
  37   74  148  222  296  444
  ...
(End)
		

Crossrefs

Programs

  • Maple
    isA174973 := proc(n)
        option remember;
        local k,dvs;
        dvs := sort(convert(numtheory[divisors](n),list)) ;
        for k from 2 to nops(dvs) do
            if op(k,dvs) > 2*op(k-1,dvs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A174973 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA174973(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    isA239929 := proc(n)
        local i,p,j,a73;
        for i from 1 do
            p := ithprime(i+1) ;
            if p > n then
                return false;
            end if;
            for j from 1 do
                a73 := A174973(j) ;
                if a73 > n then
                    break;
                end if;
                if p > 2*a73 and n = p*a73 then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 200 do
        if isA239929(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Oct 04 2018
  • Mathematica
    (* sequence of numbers k for m <= k <= n having exactly two parts *)
    (* Function a237270[] is defined in A237270 *)
    a239929[m_, n_]:=Select[Range[m, n], Length[a237270[#]]==2&]
    a239929[1, 260] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    (* test for membership in A174973 *)
    a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
    a174973[n_]:=Select[Range[n], a174973Q]
    (* compute numbers satisfying the condition *)
    a239929Stalk[start_, bound_]:=Module[{p=NextPrime[2 start], list={}}, While[start p<=bound, AppendTo[list, start p]; p=NextPrime[p]]; list]
    a239929F[n_]:=Sort[Flatten[Map[a239929Stalk[#, n]&, a174973[n]]]]
    a239929F[138] (* data *)(* Hartmut F. W. Hoft, Sep 16 2015 *)

Formula

Entries b(i, j) in the irregular triangle with rows indexed by i>=1 and columns indexed by j>=1 (alternate indexing of the example):
b(i,j) = A000040(i+1) * A174973(j) where A000040(i+1) > 2 * A174973(j). - Hartmut F. W. Hoft, Dec 06 2016

Extensions

Extended beyond a(56) by Michel Marcus, Apr 07 2014

A239663 a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1

Views

Author

Omar E. Pol, Mar 23 2014

Keywords

Comments

Conjecture 1: where records occur in A237271. - Omar E. Pol, Dec 27 2016
For more information about the symmetric representation of sigma see A237270, A237593.
This sequence of (first occurrence of) parts appears to be strictly increasing in contrast to sequence A250070 of (first occurrence of) maximum widths. - Hartmut F. W. Hoft, Dec 09 2014
Conjecture 2: all terms are odd numbers. - Omar E. Pol, Oct 14 2018
Proof of Conjecture 2: Let n = 2^m * q with m>0 and q odd; then the 1's in even positions of row n in the triangle of A237048 are at positions 2^(m+1) * d <= row(n) where d divides q. For n/2 the even positions of 1's occur at the smaller values 2^m * d <= row(n/2), thus either keeping or reducing widths (A249223) of parts in the symmetric representation of sigma for n/2 inherited from row n. Therefore the number of parts for n is at most as large as for n/2, i.e., all numbers in this sequence are odd. - Hartmut F. W. Hoft, Sep 22 2021
Observation: at least for n = 1..21 we have that 2*a(n) < a(n+1). - Omar E. Pol, Sep 22 2021
From Omar E. Pol, Jul 28 2025: (Start)
Conjecture 3: a(n) is the smallest number k having n 2-dense sublists of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.
In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
An example of the conjecture 3 for n = 1..5 is as shown below:
----------------------------------------------------
| | List of divisors of k | | |
| k | [with sublists in brackets] | n | a(n) |
----------------------------------------------------
| 1 | [1]; | 1 | 1 |
| 3 | [1], [3]; | 2 | 3 |
| 9 | [1], [3], [9]; | 3 | 9 |
| 21 | [1], [3], [7], [21]; | 4 | 21 |
| 63 | [1], [3], [7, 9], [21], [63]; | 5 | 63 |
(End)
Conjecture 4: a(n) is the smallest number k having n divisors p of k such that p is greater than twice the adjacent previous divisor of k. - Omar E. Pol, Aug 05 2025

Examples

			------------------------------------------------------
n       a(n)     A239665                  A266094(n)
------------------------------------------------------
1        1       [1]                           1
2        3       [2, 2]                        4
3        9       [5, 3, 5]                    13
4       21       [11, 5, 5, 11]               32
5       63       [32, 12, 16, 12, 32]        104
...
For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Programs

  • Mathematica
    (* a239663[] permits computation in intervals *)
    (* Function a237270[] is defined in A237270 *)
    (* variable "list" contains the first occurrences up to m *)
    a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
    a239663[{1}, {1, 1000}] (* computes the first 8 values *)
    (* Hartmut F. W. Hoft, Jul 08 2014 *)
    (* support functions are defined in A341969, A341970 & A341971 *)
    a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
    a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)

Extensions

a(6)-a(8) from Michel Marcus, Mar 28 2014
a(9) from Michel Marcus, Mar 29 2014
a(10)-a(11) from Michel Marcus, Apr 02 2014
a(12) from Hartmut F. W. Hoft, Jul 08 2014
a(13)-a(18) from Hartmut F. W. Hoft, Dec 09 2014
a(19)-a(22) from Hartmut F. W. Hoft, Sep 22 2021
Showing 1-10 of 52 results. Next