cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033212 Primes congruent to 1 or 19 (mod 30).

Original entry on oeis.org

19, 31, 61, 79, 109, 139, 151, 181, 199, 211, 229, 241, 271, 331, 349, 379, 409, 421, 439, 499, 541, 571, 601, 619, 631, 661, 691, 709, 739, 751, 769, 811, 829, 859, 919, 991, 1009, 1021, 1039, 1051, 1069, 1129, 1171, 1201, 1231, 1249, 1279, 1291, 1321, 1381
Offset: 1

Views

Author

Keywords

Comments

Theorem: Same as primes of the form x^2+15*y^2 (discriminant -60). Proof: Cox, Cor. 2.27, p. 36.
Equivalently, primes congruent to 1 or 4 (mod 15). Also x^2+xy+4y^2 is the principal form of (fundamental) discriminant -15. The only other class for -15 contains the form 2x^2+xy+2y^2 (A106859), in the other genus. - Rick L. Shepherd, Jul 25 2014
Three further theorems (these were originally stated as conjectures, but are now known to be theorems, thanks to the work of J. B. Tunnell - see link):
1. The same as primes of the form x^2-xy+4y^2 (discriminant -15) and x^2-xy+19y^2 (discriminant -75), both with x and y nonnegative. - T. D. Noe, Apr 29 2008
2. The same as primes of the form x^2+xy+19y^2 (discriminant -75), with x and y nonnegative. - T. D. Noe, Apr 29 2008
3. The same as primes of the form x^2+5xy-5y^2 (discriminant 45). - N. J. A. Sloane, Jun 01 2014
Also primes of the form x^2+7*x*y+y^2 (discriminant 45).
Lemma (Will Jagy, Jun 12 2014): If c is any (positive or negative) even number, then x^2 + x y + c y^2 and x^2 + (4 c - 1) y^2 represent the same odd numbers.
Proof: x (x + y) + c y^2 = odd, therefore x is odd, x + y odd, so y is even. Let y = 2 t. Then x( x + 2 t) + 4 c t^2 = x^2 + 2 x t + 4 c t^2 = (x+t)^2 + (4c-1) t^2 = odd. QED With c = 4, neither one represents 2, so x^2+15y^2 and x^2+xy+4y^2 represent the same primes.
Also, primes which are squares (mod 3*5). Subsequence of A191018. - David Broadhurst and M. F. Hasler, Jan 15 2016

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Primes in A243173 and in A243174.
Cf. A141785 (d=45), A033212 (Primes of form x^2+15*y^2), A038872(d=5), A038873 (d=8), A068228, A141123 (d=12), A038883 (d=13), A038889 (d=17), A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 15, 10000] (* see A106856 *)
    Select[Prime@Range[250], MemberQ[{1, 19}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    select(n->n%30==1||n%30==19, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    
  • PARI
    is(p)=issquare(Mod(p,15))&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

Extensions

Edited by N. J. A. Sloane, Jun 01 2014 and Oct 18 2014: added Tunnell document, revised entry, merged with A141184. The latter entry was submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008.
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A031363 Positive numbers of the form x^2 + xy - y^2; or, of the form 5x^2 - y^2.

Original entry on oeis.org

1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, 41, 44, 45, 49, 55, 59, 61, 64, 71, 76, 79, 80, 81, 89, 95, 99, 100, 101, 109, 116, 121, 124, 125, 131, 139, 144, 145, 149, 151, 155, 164, 169, 171, 176, 179, 180, 181, 191, 196, 199, 205, 209, 211, 220, 225, 229, 236
Offset: 1

Views

Author

Keywords

Comments

5x^2 - y^2 has discriminant 20, x^2 + xy - y^2 has discriminant 5. - N. J. A. Sloane, May 30 2014
Representable as x^2 + 3xy + y^2 with 0 <= x <= y. - Benoit Cloitre, Nov 16 2003
Numbers k such that x^2 - 3xy + y^2 + k = 0 has integer solutions. - Colin Barker, Feb 04 2014
Numbers k such that x^2 - 7xy + y^2 + 9k = 0 has integer solutions. - Colin Barker, Feb 10 2014
Also positive numbers of the form x^2 - 5y^2. - Jon E. Schoenfield, Jun 03 2022

References

  • M. Baake, "Solution of coincidence problem ...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Numbers representable as x^2 + k*x*y + y^2 with 0 <= x <= y, for k=0..9: A001481(k=0), A003136(k=1), A000290(k=2), this sequence, A084916(k=4), A243172(k=5), A242663(k=6), A243174(k=7), A243188(k=8), A316621(k=9).
See A035187 for number of representations.
Primes in this sequence: A038872, also A141158.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
See also the related sequence A263849 based on a theorem of Maass.

Programs

  • Maple
    select(t -> nops([isolve(5*x^2-y^2=t)])>0, [$1..1000]); # Robert Israel, Jun 12 2014
  • Mathematica
    ok[n_] := Resolve[Exists[{x, y}, Element[x|y, Integers], n == 5*x^2-y^2]]; Select[Range[236], ok]
    (* or, for a large number of terms: *)
    max = 60755 (* max=60755 yields 10000 terms *); A031363 = {}; xm = 1;
    While[T = A031363; A031363 = Table[5*x^2 - y^2, {x, 1, xm}, {y, 0, Floor[ x*Sqrt[5]]}] // Flatten // Union // Select[#, # <= max&]&; A031363 != T, xm = 2*xm]; A031363  (* Jean-François Alcover, Mar 21 2011, updated Mar 17 2018 *)
  • PARI
    select(x -> x, direuler(p=2,101,1/(1-(kronecker(5,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020, after hints by Colin Barker, Jun 18 2014, and Michel Marcus
    
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2-z-1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    seq(M,k=3) = { \\ assume k >= 0
    setintersect([1..M], setbinop((x,y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)]));
    };
    seq(236) \\ Gheorghe Coserea, Jul 29 2018
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A031363_gen(): # generator of terms
        return filter(lambda n:all(not((1 < p % 5 < 4) and e & 1) for p, e in factorint(n).items()),count(1))
    A031363_list = list(islice(A031363_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

Consists exactly of numbers in which primes == 2 or 3 mod 5 occur with even exponents.
Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s)+Kronecker(m, p)*p^(-2s))^(-1) for m = 5.

Extensions

More terms from Erich Friedman
b-file corrected and extended by Robert Israel, Jun 12 2014

A316621 Numbers of the form x^2 + 9*x*y + y^2, 0 <= x <= y.

Original entry on oeis.org

0, 1, 4, 9, 11, 16, 23, 25, 36, 37, 44, 49, 53, 64, 67, 71, 81, 91, 92, 99, 100, 113, 119, 121, 133, 137, 144, 148, 163, 169, 176, 179, 191, 196, 207, 212, 221, 225, 247, 253, 256, 268, 275, 284, 287, 289, 317, 323, 324, 331, 333, 361, 364, 368, 379, 389, 396, 400, 401, 407, 421, 427, 441, 443, 449
Offset: 1

Views

Author

Gheorghe Coserea, Jul 29 2018

Keywords

Comments

Discriminant 77.
In general, for k>=0 the positive part of the set S = {x^2 - k*x*y + y^2: x,y in Z} is given by the numbers of the form x^2 + k*x*y + y^2 with 0 <= x <= y natural numbers.

Crossrefs

Numbers representable as x^2 + k*x*y + y^2 with 0 <= x <= y, for k=0..9: A001481(k=0), A003136(k=1), A000290(k=2), A031363(k=3), A084916(k=4), A243172(k=5), A242663(k=6), A243174(k=7), A243188(k=8), this sequence.

Programs

  • PARI
    seq(M,k=9) = { \\ assume k >= 0
    setintersect([1..M], setbinop((x,y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)]));
    };
    concat(0, seq(449))
Showing 1-3 of 3 results.