cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182134 Number of primes p such that prime(n) < p < prime(n)^(1 + 1/n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 4, 3, 4, 3, 3, 2, 2, 4, 5, 4, 3, 2, 2, 2, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 5, 4, 4, 3, 2, 2, 4, 5, 5, 4, 4, 4, 3, 5, 6, 5, 5, 4, 3, 3, 2, 4, 4, 4, 3, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 6, 5, 7, 6, 6, 5, 5, 5, 5, 4, 4, 5, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 5, 6, 5
Offset: 1

Views

Author

Thomas Ordowski, Apr 20 2012

Keywords

Comments

Firoozbakht's conjecture: prime(n+1)^(1/(n+1)) < prime(n)^(1/n), for all n >= 1.
According to Firoozbakht's conjecture, all terms of this sequence are positive. - Jahangeer Kholdi, Jul 30 2014
Conjecture: a(n)=1 only for n = 1, 2, 3, 4, and 8. - Farideh Firoozbakht, Oct 18 2014
See A246782 and A246781 for indices such that a(n)=2 resp. a(n)=3. - M. F. Hasler, Oct 19 2014
Length of n-th row in A244365; a(n) = A001221(A245722(n)). - Reinhard Zumkeller, Nov 18 2014
a(n) = 2 for n = 5, 6, 7, 9, 10, 11, 14, 15, 22, 23, 28, 29, 30, 45, 46, 61, 66, 216, 217, 367, 3793, 1319945, ... = A246782. - Robert G. Wilson v, Feb 20 2015
a(n) = 3 for n = 12, 13, 16, 18, 20, 21, 27, 31, 34, 39, 44, 53, 59, 60, 65, 96, 97, 98, 99, 136, 154, 202, ... = A246781. - Robert G. Wilson v, Feb 20 2015
First occurrence of k: 1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, ... = A246810. - Robert G. Wilson v, Feb 20 2015
Conjecture: lim sup n->oo a(n) = oo. - John W. Nicholson, Feb 28 2015
a(n) is unbounded (that is, the above conjecture is true). In particular, there is a constant c > 1 such that a(n) > c log n infinitely often (by Maier's theorem). - Thomas Ordowski and Charles R Greathouse IV, Apr 09 2015

Examples

			a(25) = 5, because p(25) = 97 and there are 5 primes p such that 97 < p < 97^(1 + 1/25) = 121.9299290...: 101, 103, 107, 109, 113.
		

Crossrefs

Programs

  • Haskell
    a182134 = length . a244365_row  -- Reinhard Zumkeller, Nov 16 2014
    
  • Maple
    a:= n-> numtheory[pi](ceil(ithprime(n)^(1+1/n))-1)-n:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    Table[i = Prime[n] + 1; j = Floor[Prime[n]^(1 + 1/n)]; Length[Select[Range[i, j], PrimeQ]], {n, 100}] (* T. D. Noe, Apr 21 2012 *)
    f[n_] := PrimePi[ Prime[n]^(1 + 1/n)] - n; Array[f, 105] (* Robert G. Wilson v, Feb 20 2015 *)
  • PARI
    A182134(n)=primepi(prime(n)^(1+1/n))-n \\ M. F. Hasler, Nov 03 2014
    
  • Python
    from sympy import primepi, prime
    def a(n): return primepi(prime(n)**(1 + 1/n)) - n # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{m=A000040(n+1)..A249669(n)} A010051(m). - Reinhard Zumkeller, Nov 16 2014
a(n) = primepi(prime(n)^(1+1/n)) - n (see PARI program). - John W. Nicholson, Feb 11 2015

Extensions

More terms from Alois P. Heinz, Apr 21 2012

A245396 Largest prime not exceeding prime(n)^(1 + 1/n).

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 23, 31, 37, 41, 47, 53, 53, 59, 67, 73, 73, 83, 83, 89, 89, 97, 107, 113, 113, 113, 113, 127, 131, 139, 151, 157, 157, 167, 173, 179, 181, 181, 193, 199, 199, 211, 211, 211, 223, 233, 241, 251, 251, 257, 263, 263, 277, 283, 283, 293, 293, 293, 307, 307, 317, 331, 337
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2014

Keywords

Comments

Firoozbakht's conjecture, prime(n+1) < prime(n)^(1 + 1/n), is equivalent to a(n) > prime(n). See also A182134.
Here prime(n) = A000040(n). The conjecture is also equivalent to a(n) - prime(n) >= A001223(n), the n-th gap between primes. See also A246778(n) = floor(prime(n)^(1 + 1/n)) - prime(n).
It is also conjectured that the equality a(n) - prime(n) = A001223(n) holds only for n in the set {1, 2, 3, 4, 8}, see A246782. a(n) is also largest prime less than prime(n)^(1 + 1/n), since prime(n)^(1 + 1/n) is never prime. - Farideh Firoozbakht, Nov 03 2014
a(n) = A007917(A249669(n)) = A244365(n,A182134(n)) = A006530(A245722(n)). - Reinhard Zumkeller, Nov 18 2014

Crossrefs

Programs

  • Haskell
    a245396 n = a244365 n (a182134 n)  -- Reinhard Zumkeller, Nov 16 2014
  • Maple
    seq(prevprime(ceil(ithprime(n)^(1+1/n))),n=1..100); # Robert Israel, Nov 03 2014
  • Mathematica
    Table[NextPrime[Prime[n]^(1 + 1/n), -1], {n, 64}] (* Farideh Firoozbakht, Nov 03 2014 *)
  • PARI
    a(n)=precprime(prime(n)^(1+1/n))
    
  • PARI
    a(n)=precprime(sqrtnint(prime(n)^(n+1),n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

A245396 = A007917 o A249669, i.e., a(n) = A007917(A249669(n)). Although one could say "less than" in the definition of this sequence, one cannot use A151799 in this formula because for n = 2 and n = 4, one has a(n) = A249669(n).

A244365 Table read by rows: row n contains all primes p such that prime(n) < p <= floor(prime(n)^(1+1/n)).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 17, 19, 19, 23, 23, 29, 31, 31, 37, 37, 41, 41, 43, 47, 43, 47, 53, 47, 53, 53, 59, 59, 61, 67, 61, 67, 71, 73, 67, 71, 73, 71, 73, 79, 83, 73, 79, 83, 79, 83, 89, 83, 89, 89, 97, 97, 101, 103, 107, 101, 103, 107, 109, 113, 103, 107, 109
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 16 2014

Keywords

Comments

Length of n-th row = A182134(n);
T(n,1) = A000040(n+1); T(n,A182134(n)) = A245396(n).

Examples

			.   n | A182134(n) | A249669(n) |  T(n,1) ... T(n,A182134(n))
. ----+------------+------------+----------------------------
.   1 |          1 |          4 |  [3]
.   2 |          1 |          5 |  [5]
.   3 |          1 |          8 |  [7]
.   4 |          1 |         11 |  [11]
.   5 |          2 |         17 |  [13, 17]
.   6 |          2 |         19 |  [17, 19]
.   7 |          2 |         25 |  [19, 23]
.   8 |          1 |         27 |  [23]
.   9 |          2 |         32 |  [29, 31]
.  10 |          2 |         40 |  [31, 37]
.  11 |          2 |         42 |  [37, 41]
.  12 |          3 |         49 |  [41, 43, 47]
.  13 |          3 |         54 |  [43, 47, 53]
.  14 |          2 |         56 |  [47, 53]
.  15 |          2 |         60 |  [53, 59]
.  16 |          3 |         67 |  [59, 61, 67]
.  17 |          4 |         74 |  [61, 67, 71, 73]
.  18 |          3 |         76 |  [67, 71, 73]
.  19 |          4 |         83 |  [71, 73, 79, 83]
.  20 |          3 |         87 |  [73, 79, 83]
.  21 |          3 |         89 |  [79, 83, 89]
.  22 |          2 |         96 |  [83, 89]
.  23 |          2 |        100 |  [89, 97]
.  24 |          4 |        107 |  [97, 101, 103, 107]
.  25 |          5 |        116 |  [101, 103, 107, 109, 113] .
		

Crossrefs

Cf. A182134 (row lengths), A245722 (row products), A245396, A249669, A010051, A000040.

Programs

  • Haskell
    a244365 n k = a244365_tabf !! (n-1) !! (k-1)
    a244365_row n = a244365_tabf !! (n-1)
    a244365_tabf = zipWith farideh (map (+ 1) a000040_list) a249669_list
                   where farideh u v = filter ((== 1) .  a010051') [u..v]
    
  • PARI
    row(n) = my(list=List(), p=prime(n)); forprime(q=nextprime(p+1), p^(1+1/n), listput(list, q)); Vec(list); \\ Michel Marcus, Jan 24 2022

Formula

T(n,k) = A000040(n+k) for k = 1 .. A182134(n).
Showing 1-3 of 3 results.