cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068397 a(n) = Lucas(n) + (-1)^n + 1.

Original entry on oeis.org

1, 5, 4, 9, 11, 20, 29, 49, 76, 125, 199, 324, 521, 845, 1364, 2209, 3571, 5780, 9349, 15129, 24476, 39605, 64079, 103684, 167761, 271445, 439204, 710649, 1149851, 1860500, 3010349, 4870849, 7881196, 12752045, 20633239, 33385284, 54018521, 87403805
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Mar 30 2002

Keywords

Comments

Number of domino tilings of a 2 X n strip on a cylinder.
Number of domino tilings of a 2 X n rectangle = Fibonacci(n) - see A000045.
Number of perfect matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices). - Emeric Deutsch, Dec 29 2004
For n >= 3, also the number of maximum independent edge sets (matchings) in the n-prism graph. - Eric W. Weisstein, Mar 30 2017
For n >= 4, also the number of minimum clique coverings in the n-prism graph. - Eric W. Weisstein, May 03 2017

Examples

			G.f. = 5*x^2 + 4*x^3 + 9*x^4 + 11*x^5 + 20*x^6 + 29*x^7 + 49*x^8 + 76*x^9 + ...
Example: a(3)=4 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following perfect matchings: {AA',BC,B'C'}, {BB',AC,A'C'}, {CC',AB,A'B'} and {AA',BB',CC'}.
		

Crossrefs

Cf. also A102079, A102091, A252054.
a(n) = A102079(n, n).

Programs

  • Maple
    a[2]:=5: a[3]:=4: a[4]:=9: a[5]:=11: for n from 6 to 45 do a[n]:=a[n-1]+2*a[n-2]-a[n-3]-a[n-4] od:seq(a[n],n=2..40); # Emeric Deutsch, Dec 29 2004
    f:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1)+(-1)^n+1:
    map(f, [$1..50]); # Robert Israel, May 03 2017
  • Mathematica
    Table[LucasL[n] + (-1)^n + 1, {n, 1, 38}] (* Jean-François Alcover, Sep 01 2011 *)
    LucasL[#] + (-1)^# + 1 &[Range[38]] (* Eric W. Weisstein, May 03 2017 *)
    LinearRecurrence[{1, 2, -1, -1}, {1, 5, 4, 9}, 20] (* Eric W. Weisstein, Dec 31 2017 *)
    CoefficientList[Series[(1 + 4 x - 3 x^2 - 4 x^3)/(1 - x - 2 x^2 + x^3 + x^4), {x, 0, 20}], x]
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-1,2,1]^(n-1)*[1;5;4;9])[1,1] \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    Vec(x*(1+4*x-3*x^2-4*x^3)/(1-x-2*x^2+x^3+x^4) + O(x^40)) \\ Colin Barker, Jan 28 2017; Michel Marcus, Jan 19 2019

Formula

a(n) = F(n+1) + F(n-1) + 2 if n is even, a(n) = F(n+1) + F(n-1) if n is odd, where F(n) is the n-th Fibonacci number - sequence A000045.
a(n) = 1 + (-1)^n + ((1 + sqrt(5))/2)^n + ((1 - sqrt(5))/2)^n = 1 + (-1)^n + A000032(n). - Vladeta Jovovic, Apr 08 2002
Recurrence: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4). - Vladeta Jovovic, Apr 08 2002
a(n+2) = a(n+1) + a(n) if n even, a(n+2) = a(n+1) + a(n) + 2 if n odd. - Michael Somos, Jan 28 2017
a(1) = 1, a(2) = 5; a(n) = a(n-1) + a(n-2) - 2*(n mod 2). [Belcastro]
G.f.: x*(1 + 4*x - 3*x^2 - 4*x^3)/(1 - x - 2*x^2 + x^3 + x^4). - Vladeta Jovovic, Apr 08 2002
a(n) = ((1 + sqrt(5))/2)^n + ((1 - sqrt(5))/2)^n + 1 + (-1)^n. [Hosoya/Harary]
E.g.f.: exp(-x/phi) + exp(phi*x) + 2*cosh(x) - 4, where phi is the golden ratio. - Ilya Gutkovskiy, Jun 16 2016

Extensions

More terms from Vladeta Jovovic, Apr 08 2002
Two initial terms added, third comment amended to be consonant with new initial terms, offset changed to be consonant with initial terms, two references added, two formulas added. - Sarah-Marie Belcastro, Jul 04 2009
Edited by N. J. A. Sloane, Jan 10 2018 to incorporate information from a duplicate (but now dead) entry.

A253150 Number of perfect matchings in the P_5 X C_{2n} graph.

Original entry on oeis.org

450, 4480, 51842, 631750, 7840800, 97964230, 1227006722, 15382568320, 192913661250, 2419663276870, 30350713098272, 380707349218630, 4775477743210050, 59902315898992000, 751399441414986242, 9425367683335685830, 118229486214797575200, 1483041587095202467270, 18602909221707721745282, 233350323785397856885120
Offset: 2

Views

Author

Sergey Perepechko, Dec 28 2014

Keywords

Crossrefs

Programs

  • PARI
    Vec(2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)) + O(x^30)) \\ Colin Barker, May 11 2017

Formula

a(n) = 2*product(17-16*cos((2*j-1)*Pi/n)+2*cos(2*(2*j-1)*Pi/n),j=1..n).
a(n) = 2*(((sqrt(7)+sqrt(3))/2)^n+((sqrt(7)-sqrt(3))/2)^n)^2*(((sqrt(5)+1)/2)^n+((sqrt(5)-1)/2)^n)^2.
a(n) = 24*a(n-1)-192*a(n-2)+703*a(n-3)-1320*a(n-4)+ 1320*a(n-5)-703*a(n-6)+192*a(n-7)-24*a(n-8)+a(n-9).
G.f.: 2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)).

A254611 Number of perfect matchings in the P_6 X C_n graph.

Original entry on oeis.org

91, 1681, 2911, 28561, 79808, 591361, 2091817, 13344409, 53924597, 315169009, 1380947751, 7649951296, 35269184041, 188926707649, 899769503723, 4718266032649, 22943942934823, 118691459382721, 584955154102592, 2999832755191441, 14912246613880433, 76049269944443041, 380145205524781061
Offset: 3

Views

Author

Sergey Perepechko, Feb 02 2015

Keywords

Crossrefs

Formula

G.f. x^3*(91 + 1590*x - 4048*x^2 - 69300*x^3 + 50780*x^4 + 1164101*x^5 - 138254*x^6 - 10058547*x^7 - 1562576*x^8 + 50264529*x^9 + 13812974*x^10 - 155013203*x^11 - 47809304*x^12 + 306988809*x^13 + 89155840*x^14 - 399510007*x^15 - 96791692*x^16 + 345081045*x^17 + 62203726*x^18 - 197547813*x^19 - 23125568*x^20 + 74027795*x^21 + 4550826*x^22 - 17725337*x^23 - 329540*x^24 + 2608475*x^25 - 24182*x^26 - 221705*x^27 + 4727*x^28 + 9737*x^29 - 170*x^30 - 169*x^31)/((1 - x)*(1 + x)*(1 + 3*x - 4*x^2 + x^3)*(1 + 5*x + 6*x^2 + x^3)*(1 - 4*x + 3*x^2 + x^3)*(1 - 2*x - x^2 + x^3)*(1 - x - 2*x^2 + x^3)*(1 - 3*x - 4*x^2 -x^3)*(1 - 6*x + 5*x^2 - x^3)*(1 + 4*x + 3*x^2 - x^3)*(1 + 2*x - x^2 - x^3)*(1 + x - 2*x^2 - x^3)).

A263201 Number of perfect matchings on a Möbius strip of width 4 and length n.

Original entry on oeis.org

11, 37, 71, 252, 539, 1813, 4271, 13519, 34276, 103803, 276119, 813417, 2226851, 6455052, 17965151, 51604017, 144948419, 414258603, 1169523076, 3333192319, 9436433171, 26853404413, 76139155439, 216490730652, 614339685971, 1745997031837, 4956888901511
Offset: 2

Views

Author

Sergey Perepechko, Oct 12 2015

Keywords

Comments

This sequence obeys the same recurrence relation as A252054.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(11 + 26 x - 109 x^2 - 223 x^3 + 294 x^4 + 620 x^5 - 306 x^6 - 764 x^7 + 100 x^8 + 414 x^9 + 5 x^10 - 92 x^11 - 3 x^12 + 7 x^13)/((1 - x) (1 + x) (1 + x - 3 x^2 - x^3 + x^4) (1 - x - 3 x^2 + x^3 + x^4) (1 - x - 5 x^2 - x^3 + x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec(z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)) + O(z^50)) \\ Altug Alkan, Oct 12 2015

Formula

G.f.: z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)).

A254635 Number of perfect matchings in the P_7 X C_{2n} graph.

Original entry on oeis.org

6272, 179928, 6422528, 248864088, 9973238912, 405583759128, 16603641077888, 681794737794072, 28036464541430912, 1153675328152653912, 47487681076805107712, 1954983080255585201112, 80488830677377147883648, 3313925147228829031300248, 136444682110846678973251712
Offset: 2

Views

Author

Sergey Perepechko, Feb 03 2015

Keywords

Crossrefs

Formula

a(n) = 2*product_{j=1..n} (80 - 98*cos((2*j-1)*Pi/n) + 24*cos(2*(2*j-1)*Pi/n) - 2*cos(3*(2*j-1)*Pi/n)).
G.f.: 8*x^2*(784 - 67669*x + 2453871*x^2 - 50439798*x^3 + 665164698*x^4 - 6023289070*x^5 + 39096248258*x^6 - 187328171158*x^7 + 676655443050*x^8 - 1870967276271*x^9 + 4004062704149*x^10 - 6684136860372*x^11 + 8747997318284*x^12 - 9001233440740*x^13 + 7286680504380*x^14 - 4634602342804*x^15 + 2308061094588*x^16 - 894754403811*x^17 + 267700931657*x^18 - 61077759670*x^19 + 10454781914*x^20 - 1313064750*x^21 + 117311490*x^22 - 7125462*x^23 + 273866*x^24 - 5849*x^25 + 51*x^26)/((1-x)*(1-4*x+x^2)*(1-14*x+34*x^2-14*x^3+x^4)* (1-8*x+16*x^2-8*x^3+x^4) * (1-56*x+672*x^2-2632*x^3+4094*x^4-2632*x^5+672*x^6-56*x^7+x^8)* (1-32*x+288*x^2-928*x^3+1346*x^4-928*x^5+288*x^6-32*x^7+x^8)).
Showing 1-5 of 5 results.