A102081 Duplicate of A068397.
1, 5, 4, 9, 11, 20, 29, 49, 76, 125, 199, 324, 521, 845, 1364, 2209, 3571, 5780, 9349, 15129, 24476, 39605, 64079, 103684, 167761, 271445, 439204, 710649, 1149851
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings: (i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019
a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}] LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *) CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
def A102080_list(prec): P.= PowerSeriesRing(ZZ, prec) return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list() a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
Vec(-x^3*(29*x^13 -28*x^12 -362*x^11 +175*x^10 +1596*x^9 -198*x^8 -3016*x^7 -248*x^6 +2530*x^5 +464*x^4 -891*x^3 -192*x^2 +102*x +19) / ((x -1)*(x +1)*(x^4 -x^3 -5*x^2 -x +1)*(x^4 -x^3 -3*x^2 +x +1)*(x^4 +x^3 -3*x^2 -x +1)) + O(x^100)) \\ Colin Barker, Dec 13 2014
[Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
LucasL[4 Range[0, 21] + 3] LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
from sympy import lucas def a(n): return lucas(4*n + 3) print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
def L(): x, y = -1, 4 while True: yield y x, y = y, 7*y - x r = L(); [next(r) for in (0..21)] # _Peter Luschny, Jun 20 2017
I:=[1,5,10,17,51,98,211,457]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3)-Self(n-4)+2*Self(n-5)+Self(n-6)-Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 17 2017
LinearRecurrence[{1, 2, 1, -1, 2, 1, -1, -1}, {1, 5, 10, 17, 51, 98, 211, 457}, 40] (* Vincenzo Librandi, May 17 2017 *) CoefficientList[Series[(-8 x^7 - 7 x^6 + 6 x^5 + 10 x^4 - 4 x^3 + 3 x^2 + 4 x + 1) / ((x^2 - x + 1) (x^3 - x - 1) (x^3 + 2 x^2 + x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 17 2017 *) Table[2 Cos[n Pi/3] + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &] + RootSum[-1 + #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 17 2017 *)
Vec((-8*x^7-7*x^6+6*x^5+10*x^4-4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1))+O(x^20)) \\ Andrew Howroyd, May 16 2017
CoefficientList[Series[(3 - 2 x^2)/((1 + x) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Sep 16 2020 *)
Vec((3-2*x^2)/((1+x)*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Jun 03 2016
Vec(2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)) + O(x^30)) \\ Colin Barker, May 11 2017
T(3,3)=4 because in the graph C_3 X P_2 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following 3-matchings: {AA',BB',CC'}, {AA',BC,B'C'}, {BB',AC,A'C'} and {CC',AB,A'B'} (as a matter of fact, these are perfect matchings). Triangle starts: 1, 6, 5; 1, 9, 18, 4; 1, 12, 42, 44, 9; 1, 15, 75, 145, 95, 11;
G:=-z^2*(5*t^4*z^2-1+z^3*t^4+z^3*t^5-6*t-5*t^2-2*z*t-7*z*t^2+z*t^3-z^2*t^2)/(z*t+1)/(z^3*t^3-z^2*t-2*z*t-z+1) : Gser:=simplify(series(G,z=0,13)): for n from 2 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 2 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + x, 1 + 6 x + 5 x^2, 1 + 9 x + 18 x^2 + 4 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 9 x^4}, {2, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *) CoefficientList[CoefficientList[Series[-( -1 - 6 x - 5 x^2 - 2 x z - 7 x^2 z + x^3 z - x^2 z^2 + 5 x^4 z^2 + x^4 z^3 + x^5 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3)), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
Comments