cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A102081 Duplicate of A068397.

Original entry on oeis.org

1, 5, 4, 9, 11, 20, 29, 49, 76, 125, 199, 324, 521, 845, 1364, 2209, 3571, 5780, 9349, 15129, 24476, 39605, 64079, 103684, 167761, 271445, 439204, 710649, 1149851
Offset: 1

Views

Author

Keywords

A102080 Number of matchings in the C_n X P_2 (n-prism) graph.

Original entry on oeis.org

2, 12, 32, 108, 342, 1104, 3544, 11396, 36626, 117732, 378424, 1216380, 3909830, 12567448, 40395792, 129844996, 417363330, 1341539196, 4312135920, 13860583628, 44552347606, 143205490528, 460308235560, 1479577849604, 4755836293842, 15286778495572
Offset: 1

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices.
a(n) = sum of row n in A102079.
Prism graphs are defined for n>=3; extended to n=1 using closed form.
Also the Hosoya index of the n-prism graph Y_n. - Eric W. Weisstein, Jul 11 2011

Examples

			a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings:
(i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
		

Crossrefs

Column 2 of A287428.

Programs

  • GAP
    a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
  • Mathematica
    Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}]
    LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • Sage
    def A102080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list()
    a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)). - Corrected by Colin Barker, Jan 28 2017
a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for n>4.
a(n) = A033505(n) - 7*A033505(n-2) - (-1)^n. - Ralf Stephan, May 17 2007

A252054 Number of perfect matchings in the P_4 X C_n graph.

Original entry on oeis.org

19, 121, 176, 725, 1471, 5041, 11989, 37584, 97021, 290521, 783511, 2289869, 6323504, 18241441, 51026011, 146160725, 411720121, 1174844176, 3322046089, 9459791909, 26804466571, 76241702161, 216275875376, 614789884829, 1745053751719
Offset: 3

Views

Author

Sergey Perepechko, Dec 13 2014

Keywords

Crossrefs

Programs

  • PARI
    Vec(-x^3*(29*x^13 -28*x^12 -362*x^11 +175*x^10 +1596*x^9 -198*x^8 -3016*x^7 -248*x^6 +2530*x^5 +464*x^4 -891*x^3 -192*x^2 +102*x +19) / ((x -1)*(x +1)*(x^4 -x^3 -5*x^2 -x +1)*(x^4 -x^3 -3*x^2 +x +1)*(x^4 +x^3 -3*x^2 -x +1)) + O(x^100)) \\ Colin Barker, Dec 13 2014

Formula

a(n) = product(13-14*cos(2*(2*j-1)*Pi/n)+2*cos(4*(2*j-1)*Pi/n), j=1..floor(n/2)).
a(n) = a(n-1)+13*a(n-2)-7*a(n-3)-61*a(n-4)+12*a(n-5)+128*a(n-6)-128*a(n-8) -12*a(n-9)+61*a(n-10)+7*a(n-11)-13*a(n-12)-a(n-13)+a(n-14).
G.f.: -x^3*(29*x^13 -28*x^12 -362*x^11 +175*x^10 +1596*x^9 -198*x^8 -3016*x^7 -248*x^6 +2530*x^5 +464*x^4 -891*x^3 -192*x^2 +102*x +19) / ((x -1)*(x +1)*(x^4 -x^3 -5*x^2 -x +1)*(x^4 -x^3 -3*x^2 +x +1)*(x^4 +x^3 -3*x^2 -x +1)). - Colin Barker, Dec 13 2014
a(n) ~ ((1 + sqrt(29) + sqrt(14+2*sqrt(29)))/4)^n. - Vaclav Kotesovec, Dec 13 2014

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A284703 Number of maximal matchings in the n-prism graph.

Original entry on oeis.org

1, 5, 10, 17, 51, 98, 211, 457, 964, 2095, 4489, 9638, 20723, 44469, 95550, 205225, 440777, 946808, 2033571, 4367947, 9381928, 20151345, 43283195, 92967814, 199685501, 428904403, 921243124, 1978737477, 4250128177, 9128846128, 19607840133, 42115660425
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, May 16 2017

Crossrefs

Programs

  • Magma
    I:=[1,5,10,17,51,98,211,457]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3)-Self(n-4)+2*Self(n-5)+Self(n-6)-Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 17 2017
  • Mathematica
    LinearRecurrence[{1, 2, 1, -1, 2, 1, -1, -1}, {1, 5, 10, 17, 51, 98, 211, 457}, 40] (* Vincenzo Librandi, May 17 2017 *)
    CoefficientList[Series[(-8 x^7 - 7 x^6 + 6 x^5 + 10 x^4 - 4 x^3 + 3 x^2 + 4 x + 1) / ((x^2 - x + 1) (x^3 - x - 1) (x^3 + 2 x^2 + x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 17 2017 *)
    Table[2 Cos[n Pi/3] + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &] +
      RootSum[-1 + #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 17 2017 *)
  • PARI
    Vec((-8*x^7-7*x^6+6*x^5+10*x^4-4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1))+O(x^20)) \\ Andrew Howroyd, May 16 2017
    

Formula

From Andrew Howroyd, May 16 2017 (Start)
a(n) = a(n-1)+2*a(n-2)+a(n-3)-a(n-4)+2*a(n-5)+a(n-6)-a(n-7)-a(n-8) for n>8.
G.f.: x*(-8*x^7-7*x^6+6*x^5+10*x^4 -4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1)).
(End)

Extensions

a(1)-a(2) and a(20)-a(32) from Andrew Howroyd, May 16 2017

A099925 a(n) = Lucas(n) + (-1)^n.

Original entry on oeis.org

3, 0, 4, 3, 8, 10, 19, 28, 48, 75, 124, 198, 323, 520, 844, 1363, 2208, 3570, 5779, 9348, 15128, 24475, 39604, 64078, 103683, 167760, 271444, 439203, 710648, 1149850, 1860499, 3010348, 4870848, 7881195, 12752044, 20633238, 33385283, 54018520, 87403804
Offset: 0

Views

Author

Ralf Stephan, Nov 02 2004

Keywords

Comments

Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio and put c = sum {n = 1..inf} 1/2^floor(n*(phi + 2)). The bicimal expansion of the constant c begins 0.001000100100010001001.... The binary digits are the generalized Fibonacci word A221150.
The sequence 2^a(n) for n >= 1 gives the partial quotients, apart from the first, in the simple continued fraction expansion of the constant 1/2*c = 0.06692 72114 83804 90296 ... = 1/(14 + 1/(2^0 + 1/(2^4 + 1/(2^3 + 1/(2^8 + 1/(2^10 + 1/(2^19 + ...))))))). Cf. A008346. - Peter Bala, Nov 06 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 - 2 x^2)/((1 + x) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Sep 16 2020 *)
  • PARI
    Vec((3-2*x^2)/((1+x)*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Jun 03 2016

Formula

G.f.: (3-2*x^2)/((1+x)*(1-x-x^2)).
a(0) = 3, a(1) = 0, a(2) = 4 and a(n) = 2*a(n-2) + a(n-3) for n >= 3. - Peter Bala, Nov 06 2013
a(n) = A068397(n) - 1 for n>2.
a(n) = ((-1)^n+(1/2*(1-sqrt(5)))^n+(1/2*(1+sqrt(5)))^n). - Colin Barker, Jun 03 2016

A253150 Number of perfect matchings in the P_5 X C_{2n} graph.

Original entry on oeis.org

450, 4480, 51842, 631750, 7840800, 97964230, 1227006722, 15382568320, 192913661250, 2419663276870, 30350713098272, 380707349218630, 4775477743210050, 59902315898992000, 751399441414986242, 9425367683335685830, 118229486214797575200, 1483041587095202467270, 18602909221707721745282, 233350323785397856885120
Offset: 2

Views

Author

Sergey Perepechko, Dec 28 2014

Keywords

Crossrefs

Programs

  • PARI
    Vec(2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)) + O(x^30)) \\ Colin Barker, May 11 2017

Formula

a(n) = 2*product(17-16*cos((2*j-1)*Pi/n)+2*cos(2*(2*j-1)*Pi/n),j=1..n).
a(n) = 2*(((sqrt(7)+sqrt(3))/2)^n+((sqrt(7)-sqrt(3))/2)^n)^2*(((sqrt(5)+1)/2)^n+((sqrt(5)-1)/2)^n)^2.
a(n) = 24*a(n-1)-192*a(n-2)+703*a(n-3)-1320*a(n-4)+ 1320*a(n-5)-703*a(n-6)+192*a(n-7)-24*a(n-8)+a(n-9).
G.f.: 2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)).

A102079 Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices).

Original entry on oeis.org

1, 6, 5, 1, 9, 18, 4, 1, 12, 42, 44, 9, 1, 15, 75, 145, 95, 11, 1, 18, 117, 336, 420, 192, 20, 1, 21, 168, 644, 1225, 1085, 371, 29, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 49, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 76, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 125
Offset: 2

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

Row n contains n+1 terms.
Equivalently, the n-th row gives the coefficients of the matching-generating polynomial of the n-prism graph. - Eric W. Weisstein, Apr 03 2018

Examples

			T(3,3)=4 because in the graph C_3 X P_2 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following
3-matchings: {AA',BB',CC'}, {AA',BC,B'C'}, {BB',AC,A'C'} and {CC',AB,A'B'} (as a matter of fact, these are perfect matchings).
Triangle starts:
1, 6, 5;
1, 9, 18, 4;
1, 12, 42, 44, 9;
1, 15, 75, 145, 95, 11;
		

Crossrefs

Programs

  • Maple
    G:=-z^2*(5*t^4*z^2-1+z^3*t^4+z^3*t^5-6*t-5*t^2-2*z*t-7*z*t^2+z*t^3-z^2*t^2)/(z*t+1)/(z^3*t^3-z^2*t-2*z*t-z+1) : Gser:=simplify(series(G,z=0,13)): for n from 2 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 2 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + x, 1 + 6 x + 5 x^2, 1 + 9 x + 18 x^2 + 4 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 9 x^4}, {2, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[CoefficientList[Series[-( -1 - 6 x - 5 x^2 - 2 x z - 7 x^2 z + x^3 z - x^2 z^2 + 5 x^4 z^2 + x^4 z^3 + x^5 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3)), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

G.f.: -z^2*(5t^4*z^2-1+t^4*z^3+t^5*z^3-6t-5t^2-2tz-7zt^2+zt^3-t^2*z^2)/[(1+tz)(t^3*z^3-tz^2-2tz-z+1)].
The row generating polynomials A[n] satisfy A[n]=(1+t)A[n-1]+2t(1+t)A[n-2]+ t^2*(1-t)A[n-3]-t^4*A[n-4] with A[2]=1+6t+5t^2, A[3]=1+9t+18t^2+4t^3, A[4]=1+12t+42t^2+44t^3+9t^4 and A[5]=1+15t+75t^2+145t^3+95t^4+11t^5.

A254611 Number of perfect matchings in the P_6 X C_n graph.

Original entry on oeis.org

91, 1681, 2911, 28561, 79808, 591361, 2091817, 13344409, 53924597, 315169009, 1380947751, 7649951296, 35269184041, 188926707649, 899769503723, 4718266032649, 22943942934823, 118691459382721, 584955154102592, 2999832755191441, 14912246613880433, 76049269944443041, 380145205524781061
Offset: 3

Views

Author

Sergey Perepechko, Feb 02 2015

Keywords

Crossrefs

Formula

G.f. x^3*(91 + 1590*x - 4048*x^2 - 69300*x^3 + 50780*x^4 + 1164101*x^5 - 138254*x^6 - 10058547*x^7 - 1562576*x^8 + 50264529*x^9 + 13812974*x^10 - 155013203*x^11 - 47809304*x^12 + 306988809*x^13 + 89155840*x^14 - 399510007*x^15 - 96791692*x^16 + 345081045*x^17 + 62203726*x^18 - 197547813*x^19 - 23125568*x^20 + 74027795*x^21 + 4550826*x^22 - 17725337*x^23 - 329540*x^24 + 2608475*x^25 - 24182*x^26 - 221705*x^27 + 4727*x^28 + 9737*x^29 - 170*x^30 - 169*x^31)/((1 - x)*(1 + x)*(1 + 3*x - 4*x^2 + x^3)*(1 + 5*x + 6*x^2 + x^3)*(1 - 4*x + 3*x^2 + x^3)*(1 - 2*x - x^2 + x^3)*(1 - x - 2*x^2 + x^3)*(1 - 3*x - 4*x^2 -x^3)*(1 - 6*x + 5*x^2 - x^3)*(1 + 4*x + 3*x^2 - x^3)*(1 + 2*x - x^2 - x^3)*(1 + x - 2*x^2 - x^3)).

A254635 Number of perfect matchings in the P_7 X C_{2n} graph.

Original entry on oeis.org

6272, 179928, 6422528, 248864088, 9973238912, 405583759128, 16603641077888, 681794737794072, 28036464541430912, 1153675328152653912, 47487681076805107712, 1954983080255585201112, 80488830677377147883648, 3313925147228829031300248, 136444682110846678973251712
Offset: 2

Views

Author

Sergey Perepechko, Feb 03 2015

Keywords

Crossrefs

Formula

a(n) = 2*product_{j=1..n} (80 - 98*cos((2*j-1)*Pi/n) + 24*cos(2*(2*j-1)*Pi/n) - 2*cos(3*(2*j-1)*Pi/n)).
G.f.: 8*x^2*(784 - 67669*x + 2453871*x^2 - 50439798*x^3 + 665164698*x^4 - 6023289070*x^5 + 39096248258*x^6 - 187328171158*x^7 + 676655443050*x^8 - 1870967276271*x^9 + 4004062704149*x^10 - 6684136860372*x^11 + 8747997318284*x^12 - 9001233440740*x^13 + 7286680504380*x^14 - 4634602342804*x^15 + 2308061094588*x^16 - 894754403811*x^17 + 267700931657*x^18 - 61077759670*x^19 + 10454781914*x^20 - 1313064750*x^21 + 117311490*x^22 - 7125462*x^23 + 273866*x^24 - 5849*x^25 + 51*x^26)/((1-x)*(1-4*x+x^2)*(1-14*x+34*x^2-14*x^3+x^4)* (1-8*x+16*x^2-8*x^3+x^4) * (1-56*x+672*x^2-2632*x^3+4094*x^4-2632*x^5+672*x^6-56*x^7+x^8)* (1-32*x+288*x^2-928*x^3+1346*x^4-928*x^5+288*x^6-32*x^7+x^8)).
Showing 1-10 of 12 results. Next