cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A330523 Decimal expansion of Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4).

Original entry on oeis.org

5, 3, 5, 8, 9, 6, 1, 5, 3, 8, 2, 8, 3, 3, 7, 9, 9, 9, 8, 0, 8, 5, 0, 2, 6, 3, 1, 3, 1, 8, 5, 4, 5, 9, 5, 0, 6, 4, 8, 2, 2, 2, 3, 7, 4, 5, 1, 4, 1, 4, 5, 2, 7, 1, 1, 5, 1, 0, 1, 0, 8, 3, 4, 6, 1, 3, 3, 2, 8, 8, 1, 1, 9, 6, 1, 4, 5, 4, 1, 1, 0, 4, 5, 1, 1, 4, 4, 6, 5, 8, 2, 7, 3, 1, 0, 0, 2, 3, 4, 4, 0, 5, 3, 5, 1, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 17 2019

Keywords

Examples

			0.5358961538283379998085026313185459506482223745141452711510108346133288119...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(p^2 + p^3 - p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 50]], {t, 10, 100, 10}]
  • PARI
    (6/Pi^2) * prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Sep 08 2020

Formula

Equals (6/Pi^2) * A065465. - Amiram Eldar, Sep 08 2020

A356191 a(n) is the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], f[i,1]^(f[i,2]+1)))};
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A268335.
a(n) = A064549(n)/A007913(n).
a(n) = n*A336643(n).
a(n) = n^2/A350390(n).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
and gamma is the Euler-Mascheroni constant A001620. (End)

A336643 Squarefree kernel of n divided by the squarefree part of n: a(n) = rad(n) / core(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

a(n) is the least number k such that k*n (and also n/k) is an exponentially odd number (A268335). - Amiram Eldar, Nov 18 2022

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(1 - Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336643(n) = (factorback(factorint(n)[, 1]) / core(n));
    
  • PARI
    A336643(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(1-(f[i, 2]%2))));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X^2) * (1 + X + p*X^2 - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023
    
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A336643(n): return prod(primefactors(n))//core(n) # Chai Wah Wu, Dec 30 2021
    
  • SageMath
    def A336643(n: int) -> int:
        return prod(b^(1 - e % 2) for (b, e) in list(factor(n)))
    print([A336643(n) for n in range(1, 106)])  # Peter Luschny, Aug 23 2025

Formula

a(n) = A007947(n) / A007913(n).
Multiplicative with a(p^k) = p^(1-(k mod 2)) = p^A059841(k).
a(n) = n/A350390(n). - Amiram Eldar, Jan 01 2022
a(n) = A356191(n)/n. - Amiram Eldar, Nov 18 2022
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Sep 09 2023
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(1-5*s) + p^(2-5*s) + 2*p^(1-4*s) - p^(2-4*s) - p^(1-3*s) + p^(-3*s) - 2*p^(-2*s)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 12 * (log(n) + 3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.217778716619536378323007514119446813130797755001355937648276403523626491...,
f'(1) = f(1) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.716596820856763078660955244870812634072512131626849517007098664560806248...
and gamma is the Euler-Mascheroni constant A001620. (End)

A175639 Decimal expansion of Product_{p prime} (1-3/p^3+2/p^4+1/p^5-1/p^6).

Original entry on oeis.org

6, 7, 8, 2, 3, 4, 4, 9, 1, 9, 1, 7, 3, 9, 1, 9, 7, 8, 0, 3, 5, 5, 3, 8, 2, 7, 9, 4, 8, 2, 8, 9, 4, 8, 1, 4, 0, 9, 6, 3, 3, 2, 2, 3, 9, 1, 8, 9, 4, 4, 0, 1, 0, 3, 0, 3, 6, 4, 6, 0, 4, 1, 5, 9, 6, 4, 9, 8, 3, 3, 7, 0, 7, 4, 0, 1, 2, 3, 2, 3, 3, 2, 1, 3, 7, 6, 2, 1, 2, 2, 9, 3, 3, 4, 8, 4, 6, 1, 6, 8, 8, 8, 3, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Equals (49/64)*(668/729)*(15304/15625)*(116724/117649)*... inserting p= A000040 = 2, 3, 5, 7.. into the factor. Slightly larger than Product_{p=primes} (1-3/p^3) = 0.534566872085103888416775...

Examples

			0.678234491917391978035...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1-3/p^3+2/p^4+1/p^5-1/p^6 ; Digits := 130 : tm := 310 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 105; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s];
    LR = LinearRecurrence[{0, 0, 3, -2, -1, 1}, {0, 0, -9, 8, 5, -33}, 2 m0];
    r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-3/p^3+2/p^4+1/p^5-1/p^6) \\ Amiram Eldar, Mar 04 2021

Extensions

More digits from Jean-François Alcover, Apr 15 2016

A256391 a(n) = number of tuples (a,b,c,d) of natural numbers a,b,c,d <= n with gcd(a,b)=gcd(b,c)=gcd(c,d)=gcd(d,a)=1.

Original entry on oeis.org

1, 7, 35, 79, 243, 319, 787, 1155, 1859, 2295, 4267, 4891, 8295, 9743, 11851, 14539, 22191, 24359, 35427, 39387, 45915, 51687, 71171, 76407, 94911, 105047, 123251, 134447, 174003, 180835, 229783, 253007, 281447, 305111, 343315, 360215, 442547, 476115, 523111, 552307
Offset: 1

Views

Author

Juan Arias-de-Reyna, Mar 27 2015

Keywords

Comments

The sequence has the asymptotics a(n) = rho*n^4 + O(n^3*log^2(n)) where rho=prod_p(1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.21777871661953... (product extended to primes). See A256392.

Examples

			For n=2, a(2)=7 counting the tuples (1,1,1,1), (2,1,1,1), (1,2,1,1), (1,1,2,1), (1,1,1,2), (2,1,2,1), (1,2,1,2).
		

Crossrefs

Cf. A256390.

Programs

  • Mathematica
    A[M_] := A[M] = Module[{X, a1, a2, a3, a4, K, count, k},
        X = Flatten[
          Table[{a1, a2, a3, a4}, {a1, 1, M}, {a2, 1, M}, {a3, 1, M}, {a4,
             1, M}], 3];
        K = Length[X];
        count = 0;
        For[k = 1, k <= K, k++,
         {a1, a2, a3, a4} = X[[k]];
         If[(GCD[a1, a2] == 1) && (GCD[a2, a3] == 1) && (GCD[a3, a4] ==
             1) && (GCD[a4, a1] == 1), count = count + 1]];
        count];
    Table[A[n], {n, 1, 20}]

Formula

a(n) = sum_a sum_b sum_c sum_d mu(a) mu(b) mu(c) mu(d) [n/gcd(a,b)][n/gcd(b,c)][n/gcd(c,d)][n/gcd(d,a)], where mu is Moebius function, a,b,c,d run through natural numbers.

A126775 a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).

Original entry on oeis.org

1, 2, 8, 12, 32, 16, 72, 64, 108, 64, 200, 96, 288, 144, 256, 320, 512, 216, 648, 384, 576, 400, 968, 512, 1200, 576, 1296, 864, 1568, 512, 1800, 1536, 1600, 1024, 2304, 1296, 2592, 1296, 2304, 2048, 3200, 1152, 3528, 2400, 3456, 1936, 4232, 2560, 5292, 2400
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];
  • Mathematica
    Table[EulerPhi[n]^2 DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Dec 05 2012 *)

Formula

Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - Amiram Eldar, Dec 29 2022
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where
f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,
f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...
and gamma is the Euler-Mascheroni constant A001620. (End)

A196524 a(n) = phi(n)*tau(n^2).

Original entry on oeis.org

1, 3, 6, 10, 12, 18, 18, 28, 30, 36, 30, 60, 36, 54, 72, 72, 48, 90, 54, 120, 108, 90, 66, 168, 100, 108, 126, 180, 84, 216, 90, 176, 180, 144, 216, 300, 108, 162, 216, 336, 120, 324, 126, 300, 360, 198, 138, 432, 210, 300, 288, 360, 156, 378, 360, 504, 324, 252, 174, 720, 180, 270, 540, 416, 432, 540
Offset: 1

Views

Author

R. J. Mathar, Oct 07 2011

Keywords

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n^2], {n, 70}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (2*e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n^2)*eulerphi(n) \\ Charles R Greathouse IV, Dec 07 2011

Formula

Multiplicative with a(p^e) = (2e+1)*(p-1)*p^(e-1), e>0.
a(n) = A048691(n)*A000010(n).
Dirichlet g.f.: zeta^3(s-1)*product_{primes p} (1-3/p^s -1/p^(2s-2) +4/p^(2s-1) -1/p^(3s-2)) = zeta^2(s-1)*product_{primes p} (1 +p^(1-s) +p^(1-2s) -3p^(-s)).
Sum_{k=1..n} a(k) ~ c * log(n)^2 * n^2 / 4, where c = A256392 = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.217778716619536378323007514119446813130797755... - Vaclav Kotesovec, Dec 18 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^s - 1/p^(2*s-2) + 4/p^(2*s-1) - 1/p^(3*s-2)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)^2/4 + (3*gamma/2 - 1/4)*log(n) + 3*gamma^2/2 - 3*gamma/4 - 3*sg1/2 + 1/8)*f(2) + (log(n)/2 + 3*gamma/2 - 1/4)*f'(2) + f''(2)/4), where f(2) = A256392, f'(2) = f(2) * Sum_{primes p} (5*p - 3) * log(p) / (p^3 + p^2 - 3*p + 1) = 0.44156369228425957720874599661015191553108775903124..., f''(2) = f'(2)^2/f(2) + f(2) * Sum_{primes p} = p*(7*p^3 - 2*p^2 - 5*p + 4) * log(p)^2 / (p^3 + p^2 - 3*p + 1)^2 = -0.0925787956842332743072787717877016487612772912975..., gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020

A275254 The bi-unitary gcd-sum function.

Original entry on oeis.org

1, 3, 5, 7, 9, 14, 13, 15, 17, 25, 21, 30, 25, 36, 43, 31, 33, 47, 37, 57, 61, 58, 45, 64, 49, 69, 53, 82, 57, 108, 61, 63, 99, 91, 113, 99, 73, 102, 117, 117, 81, 163, 85, 132, 141, 124, 93, 130, 97, 135, 155, 157, 105, 146, 181
Offset: 1

Views

Author

R. J. Mathar, Jul 21 2016

Keywords

Comments

Row sums of A165430.

Crossrefs

Programs

  • Maple
    Pstarstar := proc(n)
        add(A165430(k,n),k=1..n) ;
    end proc:
  • Mathematica
    phi[x_, n_] := Sum[Boole[GCD[k, n] == 1], {k, 1, x}]; uphi[1]=1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); a[n_] := DivisorSum[n, uphi[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 09 2019 *)

Formula

a(n) = Sum_{k=1..n} A165430(n,k).
Sum_{k=1..n} a(k) = c * n^2 * log(n) / 2 + O(n^2), where c = Product_{p prime} (1 - (3*p-1)/(p^2*(p+1))) = zeta(2) * Product_{p prime} (1 - (2*p-1)^2/p^4) = A013661 * A256392 = 0.35823163000196141456... . - Amiram Eldar, Dec 22 2023

A319592 Decimal expansion of the probability that an integer 4-tuple is pairwise coprime.

Original entry on oeis.org

1, 1, 4, 8, 8, 4, 0, 4, 4, 0, 8, 0, 2, 2, 8, 7, 8, 8, 7, 2, 9, 2, 5, 1, 2, 7, 6, 7, 0, 1, 5, 9, 9, 0, 9, 7, 8, 4, 8, 7, 1, 3, 5, 5, 2, 6, 8, 7, 2, 8, 3, 0, 1, 7, 6, 2, 4, 8, 4, 8, 4, 2, 7, 0, 6, 2, 5, 6, 6, 6, 7, 2, 8, 0, 1, 6, 1, 6, 7, 4, 6, 1, 7, 4, 0, 2, 3
Offset: 0

Views

Author

Amiram Eldar, Aug 27 2019

Keywords

Examples

			0.114884044080228788729251276701599097848713552687283...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm = 1000; c = LinearRecurrence[{-2, 3}, {0, -12}, nm]; f[x_] := (1 - x)^3*(1 + 3*x); RealDigits[f[1/2]*f[1/3]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
  • PARI
    prodeulerrat((1 - 1/p)^3 * (1 + 3/p)) \\ Amiram Eldar, Jun 29 2023

Formula

Equals Product_{p prime} (1 - 1/p)^3 * (1 + 3/p).

A354709 Decimal expansion of Sum_{p prime} 3*(2p-1)*log(p)/(p^3 + p^2 - 3p + 1).

Original entry on oeis.org

2, 5, 2, 9, 0, 6, 6, 1, 7, 3, 5, 8, 0, 9, 2, 9, 9, 2, 9, 2, 5, 9, 5, 8, 7, 1, 2, 9, 3, 0, 1, 8, 9, 4, 5, 9, 2, 3, 0, 0, 0, 9, 2, 2, 3, 9, 9, 4, 4, 3, 9, 9, 7, 6, 1, 1, 8, 8, 9, 9, 2, 5, 6, 2, 7, 0, 1, 3, 5, 7, 8, 0, 0, 6, 6, 2, 8, 6, 4, 7, 7, 4, 9, 6, 1, 5, 1, 7, 2, 2, 4, 6, 7, 7, 6, 3, 3, 2, 0, 4, 4, 3, 2, 6, 5
Offset: 1

Views

Author

David Nguyen, Jun 03 2022

Keywords

Comments

Also logarithmic derivative of A(s,w) at (0,0), where A(s,w) = Product_{p prime} (1 - (1 - (p*(1 - p^(-1-s))^3)/(-1+p))*(1 - (p*(1 - p^(-1-w))^3)/(-1+p))), with A(0,0) = A256392.

Examples

			2.52906617358092992925958712930189459230009223994439976118899256270135780066...
		

Crossrefs

Cf. A256392.

Programs

  • Mathematica
    Block[{$MaxExtraPrecision = 1000},
    Do[CC = Join[{0},
        Series[(3 (-1 + 2 p))/(1 - 3 p + p^2 + p^3) //. p -> 1/x, {x, 0,
           t}][[3]]];
      Print[N[-Sum[
            CC[[k]]*(PrimeZetaP'[k] + Log[2]/2^k), {k, 1, Length[CC]}] + (
          3 (-1 + 2 p) Log[p])/(1 - 3 p + p^2 + p^3) //. p -> 2, 75]], {t,
        1000, 1500, 100}]]
    ratfun = 3*(2*p - 1)/(p^3 + p^2 - 3*p + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 120]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 04 2022 *)

Extensions

More digits from Vaclav Kotesovec, Jun 04 2022
Showing 1-10 of 10 results.