cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062339 Primes whose sum of digits is 4.

Original entry on oeis.org

13, 31, 103, 211, 1021, 1201, 2011, 3001, 10111, 20011, 20101, 21001, 100003, 102001, 1000003, 1011001, 1020001, 1100101, 2100001, 10010101, 10100011, 20001001, 30000001, 101001001, 200001001, 1000000021, 1000001011, 1000010101, 1000020001, 1000200001, 1002000001, 1010000011
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Comments

Is this sequence (and its brothers A062337, A062341 and A062343) infinite?
10^A049054(m)+3 and 3*10^A056807(m)+1 are subsequences. A107715 (primes containing only digits from set {0,1,2,3}) is a supersequence. Terms not containing the digit 3 are either terms of A020449 (primes that contain digits 0 and 1 only) or of A106100 (primes with maximal digit 2) - and thus terms of these sequences' union A036953 (primes containing only digits from set {0,1,2}). - Rick L. Shepherd, May 23 2005

Examples

			3001 is a prime with sum of digits = 4, hence belongs to the sequence.
		

Crossrefs

Subsequence of A062338, A107288, and A107715 (primes with digits <= 3).
A159352 is a subsequence.
Cf. A000040 (primes), A052218 (digit sum = 4), A061239 (primes == 4 (mod 9)).
Cf. Primes p with digital sum equal to k: {2, 11 and 101} for k=2; this sequence (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28), A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), A244918 (k=68), A181321 (k=70).
Cf. A049054 (10^k+3 is prime), A159352 (these primes).
Cf. A056807 (3*10^k+1 is prime), A259866 (these primes).
Cf. A020449 (primes with digits 0 and 1), A036953 (primes with digits <= 2), A106100 (primes with largest digit = 2), A069663, A069664 (smallest resp. largest n-digit prime with minimum digit sum).

Programs

  • Magma
    [p: p in PrimesUpTo(800000000) | &+Intseq(p) eq 4]; // Vincenzo Librandi, Jul 08 2014
  • Maple
    N:= 20: # to get all terms < 10^N
    B[1]:= {1}:
    B[2]:= {2}:
    B[3]:= {3}:
    A:= {}:
    for d from 2 to N do
       B[4]:= map(t -> 10*t+1,B[3]) union  map(t -> 10*t+3,B[1]);
       B[3]:= map(t -> 10*t, B[3]) union map(t -> 10*t+1,B[2]) union map(t -> 10*t+2,B[1]);
       B[2]:= map(t -> 10*t, B[2]) union map(t -> 10*t+1,B[1]);
       B[1]:= map(t -> 10*t, B[1]);
       A:= A union select(isprime,B[4]);
    od:
    sort(convert(A,list)); # Robert Israel, Dec 28 2015
  • Mathematica
    Union[FromDigits/@Select[Flatten[Table[Tuples[{0,1,2,3},k],{k,9}],1],PrimeQ[FromDigits[#]]&&Total[#]==4&]] (* Jayanta Basu, May 19 2013 *)
    FromDigits/@Select[Tuples[{0,1,2,3},10],Total[#]==4&&PrimeQ[FromDigits[#]]&] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    for(a=1,20,for(b=0,a,for(c=0,b,if(isprime(k=10^a+10^b+10^c+1),print1(k", "))))) \\ Charles R Greathouse IV, Jul 26 2011
    
  • PARI
    select( {is_A062339(p,s=4)=sumdigits(p)==s&&isprime(p)}, primes([1,10^7])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
    
  • PARI
    A062339_upto_length(L,s=4,a=List(),u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Vecrev(a) \\ M. F. Hasler, Mar 09 2022
    

Formula

Intersection of A052218 (digit sum 4) and A000040 (primes). - M. F. Hasler, Mar 09 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
More terms from Rick L. Shepherd, May 23 2005
More terms from Lekraj Beedassy, Dec 19 2007

A056807 Numbers k such that 3*10^k + 1 is prime.

Original entry on oeis.org

1, 3, 7, 10, 28, 36, 67, 81, 147, 483, 643, 1020, 1900, 2620, 10453, 27720, 52824, 105589, 111988, 618853, 665829
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2000

Keywords

Examples

			k = 3 gives (3*10^3+1) = 3000+1 = 3001, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 3*10^k + 1], Print[ k ]], {k, 0, 20000}]
  • PARI
    is(k)=isprime(3*10^k+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A101823(n) + 1.

Extensions

a(13)-a(14) from Julien Peter Benney (jpbenney(AT)ftml.net), Nov 23 2004
a(15) from Hugo Pfoertner, Jan 18 2005
a(16)-a(17) from Robert G. Wilson v, Jan 18 2005
a(18) from Roman Makarchuk, Dec 05 2008 confirmed as next term by Ray Chandler, Mar 02 2012
a(19) from Alexander Gramolin, Feb 24 2012 confirmed as next term by Ray Chandler, Mar 02 2012
a(20)-a(21) from Kamada data by Robert Price, Jan 26 2015

A199683 a(n) = 3*10^n + 1.

Original entry on oeis.org

4, 31, 301, 3001, 30001, 300001, 3000001, 30000001, 300000001, 3000000001, 30000000001, 300000000001, 3000000000001, 30000000000001, 300000000000001, 3000000000000001, 30000000000000001, 300000000000000001, 3000000000000000001, 30000000000000000001, 300000000000000000001
Offset: 0

Views

Author

Vincenzo Librandi, Nov 09 2011

Keywords

Crossrefs

Primes: A056807, A259866.

Programs

  • Magma
    [3*10^n+1: n in [0..30]];
  • Mathematica
    3*10^Range[0,20]+1 (* or *) LinearRecurrence[{11,-10},{4,31},20] (* Harvey P. Dale, Dec 12 2016 *)

Formula

a(n) = 10*a(n-1) - 9.
a(n) = 11*a(n-1) - 10*a(n-2).
G.f.: (4-13*x)/((1-x)*(1-10*x)).
E.g.f.: exp(x)*(1 + 3*exp(9*x)). - Elmo R. Oliveira, Jun 10 2025

A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits.

Original entry on oeis.org

11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
Offset: 1

Views

Author

Burak Muslu, Sep 10 2021

Keywords

Examples

			97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
		

Crossrefs

Subsequence of A209871.
A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences.

Programs

  • Maple
    select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # Robert Israel, Mar 05 2024
  • Mathematica
    Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
  • PARI
    isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
  • Python
    from sympy import primerange
    def ok(p): return p%sum(map(int, str(p))) == 1
    print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021
    
Showing 1-4 of 4 results.