A062339 Primes whose sum of digits is 4.
13, 31, 103, 211, 1021, 1201, 2011, 3001, 10111, 20011, 20101, 21001, 100003, 102001, 1000003, 1011001, 1020001, 1100101, 2100001, 10010101, 10100011, 20001001, 30000001, 101001001, 200001001, 1000000021, 1000001011, 1000010101, 1000020001, 1000200001, 1002000001, 1010000011
Offset: 1
Examples
3001 is a prime with sum of digits = 4, hence belongs to the sequence.
Links
- T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..1000 from T. D. Noe)
- Amin Witno, Numbers which factor as their digital sum times a prime, International Journal of Open Problems in Computer Science and Mathematics 3:2 (2010), pp. 132-136.
Crossrefs
A159352 is a subsequence.
Cf. Primes p with digital sum equal to k: {2, 11 and 101} for k=2; this sequence (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28), A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), A244918 (k=68), A181321 (k=70).
Programs
-
Magma
[p: p in PrimesUpTo(800000000) | &+Intseq(p) eq 4]; // Vincenzo Librandi, Jul 08 2014
-
Maple
N:= 20: # to get all terms < 10^N B[1]:= {1}: B[2]:= {2}: B[3]:= {3}: A:= {}: for d from 2 to N do B[4]:= map(t -> 10*t+1,B[3]) union map(t -> 10*t+3,B[1]); B[3]:= map(t -> 10*t, B[3]) union map(t -> 10*t+1,B[2]) union map(t -> 10*t+2,B[1]); B[2]:= map(t -> 10*t, B[2]) union map(t -> 10*t+1,B[1]); B[1]:= map(t -> 10*t, B[1]); A:= A union select(isprime,B[4]); od: sort(convert(A,list)); # Robert Israel, Dec 28 2015
-
Mathematica
Union[FromDigits/@Select[Flatten[Table[Tuples[{0,1,2,3},k],{k,9}],1],PrimeQ[FromDigits[#]]&&Total[#]==4&]] (* Jayanta Basu, May 19 2013 *) FromDigits/@Select[Tuples[{0,1,2,3},10],Total[#]==4&&PrimeQ[FromDigits[#]]&] (* Harvey P. Dale, Jul 23 2025 *)
-
PARI
for(a=1,20,for(b=0,a,for(c=0,b,if(isprime(k=10^a+10^b+10^c+1),print1(k", "))))) \\ Charles R Greathouse IV, Jul 26 2011
-
PARI
select( {is_A062339(p,s=4)=sumdigits(p)==s&&isprime(p)}, primes([1,10^7])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
-
PARI
A062339_upto_length(L,s=4,a=List(),u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Vecrev(a) \\ M. F. Hasler, Mar 09 2022
Formula
Extensions
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
More terms from Rick L. Shepherd, May 23 2005
More terms from Lekraj Beedassy, Dec 19 2007
Comments