cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A260876 Number of m-shape set partitions, square array read by ascending antidiagonals, A(m,n) for m, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 5, 5, 1, 1, 11, 31, 15, 7, 1, 1, 36, 365, 379, 52, 11, 1, 1, 127, 6271, 25323, 6556, 203, 15, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 22, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 30
Offset: 0

Views

Author

Peter Luschny, Aug 02 2015

Keywords

Comments

A set partition of m-shape is a partition of a set with cardinality m*n for some n >= 0 such that the sizes of the blocks are m times the parts of the integer partitions of n.
If m = 0, all possible sizes are zero. Thus the number of set partitions of 0-shape is the number of integer partitions of n (partition numbers A000041).
If m = 1, the set is {1, 2, ..., n} and the set of all possible sizes are the integer partitions of n. Thus the number of set partitions of 1-shape is the number of set partitions (Bell numbers A000110).
If m = 2, the set is {1, 2, ..., 2n} and the number of set partitions of 2-shape is the number of set partitions into even blocks A005046.
From Petros Hadjicostas, Aug 06 2019: (Start)
Irwin (1916) proved the following combinatorial result: Assume r_1, r_2, ..., r_n are positive integers and we have r_1*r_2*...*r_n objects. We divide them into r_1 classes of r_2*r_3*...*r_n objects each, then each class into r_2 subclasses of r_3*...*r_n objects each, and so on. We call each such classification, without reference to order, a "classification" par excellence. He proved that the total number of classifications is (r_1*r_2*...*r_n)!/( r1! * (r_2!)^(r_1) * (r_3!)^(r_1*r_2) * ... (r_n!)^(r_1*r_2*...*r_{n-1}) ).
Apparently, this problem appeared in Carmichael's "Theory of Numbers".
This result can definitely be used to prove some special cases of my conjecture below. (End)

Examples

			[ n ] [0  1   2       3        4           5              6]
[ m ] ------------------------------------------------------
[ 0 ] [1, 1,  2,      3,       5,          7,            11]  A000041
[ 1 ] [1, 1,  2,      5,      15,         52,           203]  A000110
[ 2 ] [1, 1,  4,     31,     379,       6556,        150349]  A005046
[ 3 ] [1, 1, 11,    365,   25323,    3068521,     583027547]  A291973
[ 4 ] [1, 1, 36,   6271, 3086331, 3309362716, 6626013560301]  A291975
        A260878,A309725, ...
For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 84 and 280 respectively. Thus A(3,3) = 365.
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    3]
[1, 1,   4,    5,     5]
[1, 1,  11,   31,    15,    7]
[1, 1,  36,  365,   379,   52,  11]
[1, 1, 127, 6271, 25323, 6556, 203, 15]
.
From _Peter Luschny_, Aug 14 2019: (Start)
For example consider the case n = 4. There are five integer partitions of 4:
  P = [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. The shapes are m times the parts of the integer partitions: S(m) = [[4m], [3m, m], [2m, 2m], [2m, m, m], [m, m, m, m]].
* In the case m = 1 we look at set partitions of {1, 2, 3, 4} with sizes in  [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] which gives rise to [1, 4, 3, 6, 1] with sum 15.
* In the case m = 2 we look at set partitions of {1, 2, .., 8} with sizes in [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]] which gives rise to [1, 28, 35, 210, 105] with sum 379.
* In the case m = 0 we look at set partitions of {} with sizes in [[0], [0, 0], [0, 0], [0, 0, 0], [0, 0, 0, 0]] which gives rise to [1, 1, 1, 1, 1] with sum 5 (because the only partition of the empty set is the set that contains the empty set, thus from the definition T(0,4) = Sum_{S(0)} card({0}) = A000041(4) = 5).
If n runs through 0, 1, 2,... then the result is an irregular triangle in which the n-th row lists multinomials for partitions of [m*n] which have only parts which are multiples of m. These are the triangles A080575 (m = 1), A257490 (m = 2), A327003 (m = 3), A327004 (m = 4). In the case m = 0 the triangle is A000012 subdivided into rows of length A000041. See the cross references how this case integrates into the full picture.
(End)
		

Crossrefs

-----------------------------------------------------------------
[m] | multi- | sum of | main | by | comple- |
| nomials | rows | diagonal | size | mentary |
-----------------------------------------------------------------
Cf. A326996 (main diagonal), A260883 (ordered), A260875 (complementary).
Columns include A000012, A260878, A309725.

Programs

  • Maple
    A:= proc(m, n) option remember; `if`(m=0, combinat[numbpart](n),
          `if`(n=0, 1, add(binomial(m*n-1, m*k-1)*A(m, n-k), k=1..n)))
        end:
    seq(seq(A(d-n, n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    A[m_, n_] := A[m, n] = If[m==0, PartitionsP[n], If[n==0, 1, Sum[Binomial[m n - 1, m k - 1] A[m, n - k], {k, 1, n}]]];
    Table[Table[A[d - n, n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
  • SageMath
    def A260876(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return sum(SetPartitions(sum(s), s).cardinality() for s in shapes)
    for m in (0..4): print([A260876(m,n) for n in (0..6)])

Formula

From Petros Hadjicostas, Aug 02 2019: (Start)
A(m, 2) = 1 + (1/2) * binomial(2*m, m) for m >= 1.
A(m, 3) = 1 + binomial(3*m, m) + (3*m)!/(6 * (m!)^3) for m >= 1.
A(m, 4) = (1/4!) * multinomial(4*m, [m, m, m, m]) + (1/2) * multinomial(4*m, [2*m, m, m]) + multinomial(4*m, [m, 3*m]) + (1/2) * multinomial(4*m, [2*m, 2*m]) + 1 for m >= 1.
Conjecture: For n >= 0, let P be the set of all possible lists (a_1,...,a_n) of nonnegative integers such that a_1*1 + a_2*2 + ... + a_n*n = n. Consider terms of the form multinomial(n*m, m*[1,..., 1,2,..., 2,..., n,..., n])/(a_1! * a_2! * ... * a_n!), where in the list [1,...,1,2,...,2,...,n,...,n] the number 1 occurs a_1 times, 2 occurs a_2 times, ..., and n occurs a_n times. (Here a_n = 0 or 1.) Summing these terms over P we get A(m, n) provided m >= 1. (End)
Conjecture for a recurrence: A(m, n) = Sum_{k = 0..n-1} binomial(m*n - 1, m*k) * A(m, k) with A(m, 0) = 1 for m >= 1 and n >= 0. (Unfortunately, the recurrence does not hold for m = 0.) - Petros Hadjicostas, Aug 12 2019

A327001 Generalized Bell numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 8, 1, 1, 11, 31, 15, 16, 1, 1, 36, 365, 379, 52, 32, 1, 1, 127, 6271, 25323, 6556, 203, 64, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 128, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 256
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			[n\k][0  1   2        3        4           5             6]
[ - ] -----------------------------------------------------
[ 0 ] 1, 1,  2,       4,       8,         16,            32  A011782
[ 1 ] 1, 1,  2,       5,      15,         52,           203  A000110
[ 2 ] 1, 1,  4,      31,     379,       6556,        150349  A005046
[ 3 ] 1, 1, 11,     365,   25323,    3068521,     583027547  A291973
[ 4 ] 1, 1, 36,    6271, 3086331, 3309362716, 6626013560301  A291975
       A260878, A326998,
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    4]
[1, 1,   4,    5,     8]
[1, 1,  11,   31,    15,    16]
[1, 1,  36,  365,   379,   52,  32]
[1, 1, 127, 6271, 25323, 6556, 203, 64]
		

Crossrefs

A260876 (variant based on shapes).
Columns include: A260878, A326998.
Cf. A327000.

Programs

  • Maple
    A327001 := proc(n, k) option remember; if k = 0 then return 1 fi;
    add(binomial(n*k - 1, n*j) * A327001(n, j), j = 0..k-1) end:
    for n from 0 to 6 do seq(A327001(n, k), k=0..6) od; # row-wise
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k-1, n*j]*A[n, j], {j, 0, k-1}]];
    Table[A[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)

Formula

A(n, k) = Sum_{j=0..k-1} binomial(n*k - 1, n*j) * A(n, j) for k > 0, A(n, 0) = 1.

A323229 a(n) = binomial(2*n, n+1) + 1.

Original entry on oeis.org

1, 2, 5, 16, 57, 211, 793, 3004, 11441, 43759, 167961, 646647, 2496145, 9657701, 37442161, 145422676, 565722721, 2203961431, 8597496601, 33578000611, 131282408401, 513791607421, 2012616400081, 7890371113951, 30957699535777, 121548660036301, 477551179875953
Offset: 0

Views

Author

Peter Luschny, Feb 12 2019

Keywords

Crossrefs

Cf. A323230 (d=0), A260878 (d=1), this sequence (d=2).
Cf. A212382.

Programs

  • Magma
    [Binomial(2*n, n+1) + 1: n in [0..30]]; // G. C. Greubel, Dec 26 2021
    
  • Maple
    aList := proc(len) local gf, ser; assume(Im(x) > 0);
    gf := (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1));
    ser := series(gf, x, len+2):
    seq(coeff(ser, x, n), n=0..len) end: aList(27);
  • Mathematica
    Table[Binomial[2n, n+1] + 1, {n, 0, 26}]
  • Sage
    [binomial(2*n, n+1) + 1 for n in (0..30)] # G. C. Greubel, Dec 26 2021

Formula

Let G(x) = (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 6*x^3 - 4*x + 1 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (4*x^4 - 14*x^3 + 17*x^2 - 8*x + 1)*G(x).
a(n) = A212382(2*n, n). - Alois P. Heinz, May 03 2019

A112849 Number of congruence classes (epimorphisms/vertex partitionings induced by graph endomorphisms) of undirected cycles of even length: |C(C_{2*n})|.

Original entry on oeis.org

1, 4, 11, 36, 127, 463, 1717, 6436, 24311, 92379, 352717, 1352079, 5200301, 20058301, 77558761, 300540196, 1166803111, 4537567651, 17672631901, 68923264411, 269128937221, 1052049481861, 4116715363801, 16123801841551, 63205303218877, 247959266474053, 973469712824057, 3824345300380221, 15033633249770521
Offset: 1

Views

Author

Martin Alexander Michels (martinmichels(AT)t-online.de), Sep 24 2005

Keywords

References

  • M. A. Michels, About The Structure of Graph Endomorphisms, Diploma thesis, University of Oldenburg, Germany, 2005.

Crossrefs

Programs

  • Magma
    [1] cat [1 + (1/2)*Binomial(2*n-1, n-1) + (1/2)*Binomial(2*n-1, n): n in [2..30]]; // Vincenzo Librandi, Feb 26 2017
    
  • Maple
    egf := n->exp(exp(x)*(1-(GAMMA(n,x)/GAMMA(n)))):
    a := n->`if`(n=1,1,(2*n)!*coeff(series(egf(n),x,2*n+1),x,2*n)):
    seq(a(n),n=1..29); # Peter Luschny, Apr 05 2011
  • Mathematica
    Join[{1}, Table[1 + (1/2) Binomial[2 n - 1, n - 1] + (1/2)Binomial[2 n - 1, n], {n, 2, 30}]] (* Vincenzo Librandi, Feb 26 2017 *)
  • PARI
    a(n) = if (n==1, 1, 1 + (binomial(2*n-1, n-1) + binomial(2*n-1, n))/2); \\ Michel Marcus, Feb 26 2017

Formula

|C(C_2n)| = 1 + (1/2)*binomial(2*n-1, n-1) + (1/2)*binomial(2*n-1, n), n > 1.
a(n) = A260878(n) for n >= 2. - Alois P. Heinz, Aug 06 2015
Conjecture: n*(3*n - 5)*a(n) + (-15*n^2 + 31*n - 12)*a(n-1) + 2*(3*n - 2)*(2*n - 3)*a(n-2) = 0. - R. J. Mathar, Aug 07 2015

A282988 Triangle of partitions of an n-set into boxes of size >= m.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 26 2017

Keywords

Examples

			Triangle T(n,m) begins:
    1;
    2,   1;
    5,   1,   1;
   15,   4,   1,   1;
   52,  11,   1,   1,   1;
  203,  41,  11,   1,   1,   1;
  877, 162,  36,   1,   1,   1,   1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, add(
          T(n-j, k)*binomial(n-1, j-1), j=k..n))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *)
  • Maxima
    T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m);

Formula

T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m).
E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k).

A309522 Generalized Blasius numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 4, 6, 14, 1, 1, 11, 34, 24, 42, 1, 1, 36, 375, 496, 120, 132, 1, 1, 127, 6306, 27897, 11056, 720, 429, 1, 1, 463, 129256, 3156336, 3817137, 349504, 5040, 1430, 1, 1, 1717, 2877883, 514334274, 3501788976, 865874115, 14873104, 40320, 4862
Offset: 0

Views

Author

Keywords

Comments

The generalized Blasius o.d.e. of order n whose infinite series solution involves row n of this square array appears in Salié (1955). Rows n = 2 and n = 3 of this array appear in Kuba and Panholzer (2014, 2016), who give combinatorial interpretations to the numbers in those two rows.
Eq. (22) in Kuba and Panholzer (2014, p. 23) and Eq. (5) in Kuba and Panholzer (2016, p. 233) are general o.d.e.s for generating infinite sequences of numbers with some combinatorial properties. Even though they bear some similarity to Salié's general o.d.e., it is not clear whether either one can be used to give combinatorial interpretation to the numbers in rows n >= 4 of the current square array.

Examples

			Table A(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
[0] 1, 1,  2,    5,      14,         42,           132, ...  A000108
[1] 1, 1,  2,    6,      24,        120,           720, ...  A000142
[2] 1, 1,  4,   34,     496,      11056,        349504, ...  A002105
[3] 1, 1, 11,  375,   27897,    3817137,     865874115, ...  A018893
[4] 1, 1, 36, 6306, 3156336, 3501788976, 7425169747776, ...
     A260878|
		

Crossrefs

Rows include A000108, A000142, A002105 (shifted), A018893.
Columns include A260878.
Cf. A256522 (Blasius constant), A260876.

Programs

  • Maple
    A := proc(n, k) option remember; if k = 0 then 1 else
    add(binomial(n*k-1, n*v)*A(n, v)*A(n, k-1-v), v=0..k-1) fi end:
    seq(seq(A(n-k, k), k=0..n), n=0..9);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k - 1, n*v]*A[n, v]* A[n, k - 1 - v], {v, 0, k - 1}]];
    Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)

Formula

A(n, k) = Sum_{v=0..k-1} binomial(n*k-1, n*v)*A(n, v)*A(n, k-1-v) for k > 0 and A(n, 0) = 1.
A(n, 2) = A260876(n, 2) = binomial(2*n - 1, n) + 1 for n >= 0.
A(n, 3) = A260876(n, 2) + A260876(n, 3) - 1 = (binomial(3*n - 1, 2*n) + 1) * (binomial(2*n - 1, n) + 1) + binomial(3*n - 1, n) for n >= 1.

A309725 Number of set partitions of {1,2,...,3n} with sizes in {[n, n, n], [2n, n], [3n]}.

Original entry on oeis.org

3, 5, 31, 365, 6271, 129130, 2877421, 66628441, 1578320767, 37983592076, 925196176906, 22754692780561, 564123212097901, 14079691134569845, 353428830512017081, 8915830309096530865, 225890912989184760703, 5744976464242932324976, 146603288011226858621356
Offset: 0

Views

Author

Peter Luschny, Aug 14 2019

Keywords

Comments

Fourth column in A260876. Apart from a(0) the same as A326998.

Crossrefs

A323231 A(n, k) = [x^k] (1/(1-x) + x/(1-x)^n), square array read by descending antidiagonals for n, k >= 0.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 5, 7, 5, 2, 1, 1, 2, 6, 11, 11, 6, 2, 1, 1, 2, 7, 16, 21, 16, 7, 2, 1, 1, 2, 8, 22, 36, 36, 22, 8, 2, 1, 1, 2, 9, 29, 57, 71, 57, 29, 9, 2, 1, 1, 2, 10, 37, 85, 127, 127, 85, 37, 10, 2, 1
Offset: 0

Views

Author

Peter Luschny, Feb 10 2019

Keywords

Examples

			Array starts:
[0] 1, 2,  1,  1,   1,   1,    1,    1,    1,     1,     1, ...
[1] 1, 2,  2,  2,   2,   2,    2,    2,    2,     2,     2, ... A040000
[2] 1, 2,  3,  4,   5,   6,    7,    8,    9,    10,    11, ... A000027
[3] 1, 2,  4,  7,  11,  16,   22,   29,   37,    46,    56, ... A000124
[4] 1, 2,  5, 11,  21,  36,   57,   85,  121,   166,   221, ... A050407
[5] 1, 2,  6, 16,  36,  71,  127,  211,  331,   496,   716, ... A145126
[6] 1, 2,  7, 22,  57, 127,  253,  463,  793,  1288,  2003, ... A323228
[7] 1, 2,  8, 29,  85, 211,  463,  925, 1717,  3004,  5006, ...
[8] 1, 2,  9, 37, 121, 331,  793, 1717, 3433,  6436, 11441, ...
[9] 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12871, 24311, ...
.
Read as a triangle (by descending antidiagonals):
                                     1
                                  2,   1
                                1,   2,   1
                             1,   2,   2,   1
                           1,   2,   3,   2,   1
                        1,   2,   4,   4,   2,   1
                      1,   2,   5,   7,   5,   2,  1
                    1,  2,   6,  11,  11,   6,   2,  1
                  1,  2,   7,  16,  21,  16,   7,  2,  1
                1,  2,  8,  22,  36,  36,  22,   8,  2,  1
              1,  2,  9,  29,  57,  71,  57,  29,  9,  2,  1
.
A(0, 1) = C(-1, 0) + 1 = 2 because C(-1, 0) = 1. A(1, 0) = C(-1, -1) + 1 = 1 because C(-1, -1) = 0. Warning: Some computer algebra programs (for example Maple and Mathematica) return C(n, n) = 1 for n < 0. This contradicts the definition given by Graham et al. (see reference). On the other hand this definition preserves symmetry.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 154.

Crossrefs

Differs from A323211 only in the second term.
Diagonals A(n, n+d): A323230 (d=0), A260878 (d=1), A323229 (d=2).
Antidiagonal sums are A323227(n) if n!=1.
Cf. A007318 (Pascal's triangle).

Programs

  • Julia
    using AbstractAlgebra
    function Arow(n, len)
        R, x = PowerSeriesRing(ZZ, len+2, "x")
        gf = inv(1-x) + divexact(x, (1-x)^n)
        [coeff(gf, k) for k in 0:len-1] end
    for n in 0:9 println(Arow(n, 11)) end
  • Maple
    Binomial := (n, k) -> `if`(n < 0 and n = k, 0, binomial(n,k)):
    A := (n, k) -> Binomial(n + k - 2, k - 1) + 1:
    seq(lprint(seq(A(n, k), k=0..10)), n=0..10);
  • Mathematica
    T[n_, k_]:= If[k==0, 1 + Boole[n==1], If[k==n, 1, Binomial[n-2, k-1] + 1]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2021 *)
  • Sage
    def Arow(n):
        R. = PowerSeriesRing(ZZ, 20)
        gf = 1/(1-x) + x/(1-x)^n
        return gf.padded_list(10)
    for n in (0..9): print(Arow(n))
    

Formula

A(n, k) = binomial(n + k - 2, k - 1) + 1. Note that binomial(n, n) = 0 if n < 0.
A(n, k) = A(k, n) with the exception A(1,0) != A(0,1).
A(n, n) = binomial(2*n-2, n-1) + 1 = A323230(n).
From G. C. Greubel, Dec 27 2021: (Start)
T(n, k) = binomial(n-2, k-1) + 1 with T(n, 0) = 1 + [n=1], T(n, n) = 1.
T(2*n, n) = A323230(n).
Sum_{k=0..n} T(n,k) = n + 1 + 2^(n-2) - [n=0]/4 + [n=1]/2. (End)

A373865 Sum over all compositions of 2n into n parts of the least common multiple of the parts.

Original entry on oeis.org

1, 2, 8, 50, 160, 892, 3794, 19560, 80112, 371948, 1614598, 7180494, 30794746, 134269410, 574754496, 2471353090, 10542096528, 45057428356, 191653403306, 814082549052, 3444043955350, 14537736838038, 61174002263338, 256838845740468, 1075631257186986
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2024

Keywords

Examples

			a(3) = 50 = 2 + 6*6 + 3*4: 222, 123, 132, 213, 231, 312, 321, 114, 141, 411.
		

Crossrefs

Cf. A005430 (the same for sum), A165817 (the same for product), A181851, A260878 (the same for gcd).

Formula

a(n) = A181851(2n,n).
Showing 1-9 of 9 results.