cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A031971 a(n) = Sum_{k=1..n} k^n.

Original entry on oeis.org

1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1

Views

Author

Chris du Feu (chris(AT)beckingham0.demon.co.uk)

Keywords

Comments

From Alexander Adamchuk, Jul 21 2006: (Start)
p^(3k - 1) divides a(p^k) for prime p > 2 and k = 1, 2, 3, 4, ... or p^2 divides a(p) for prime p > 2. p^5 divides a(p^2) for prime p > 2. p^8 divides a(p^3) for prime p > 2. p^11 divides a(p^4) for prime p > 2.
p^2 divides a(2p) for prime p > 3. p^3 divides a(3p) for prime p > 2. p^2 divides a(4p) for prime p > 5. p^3 divides a(5p) for prime p > 3. p^2 divides a(6p) for prime p > 7.
p divides a(2p - 1) for all prime p. p^3 divides a(2p^2 - 1) for all prime p. p^5 divides a(2p^3 - 1) for all prime p.
p divides a((p - 1)/2) for p = 5, 13, 17, 29, 37, 41, 53, 61, ... = A002144 Pythagorean primes: primes of form 4n + 1.
(End)
If p prime then a(p-1) == -1 (mod p) [see De Koninck & Mercier reference]. Example: for p = 7, a(6) = 67171 = 7 * 9596 - 1. - Bernard Schott, Mar 06 2020

References

  • J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

A diagonal of array A103438.
For a(n) mod n see A182398.

Programs

Formula

a(n) is asymptotic to (e/(e - 1))*n^n. - Benoit Cloitre, Dec 17 2003
a(n) = zeta(-n) - zeta(-n, n + 1), where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function, a generalization of the Riemann zeta function. - Alexander Adamchuk, Jul 21 2006
a(n) == 1 (mod n) <==> n is in A014117 = 1, 2, 6, 42, 1806 (see the link "On the congruence ..."). - Jonathan Sondow, Oct 18 2013
a(A054377(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
a(n) = n! * [x^n] exp(x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018
a(n) ~ ((e*n+1)/((e-1)*(n+1))) * n^n. - N. J. A. Sloane, Oct 13 2018, based on email from Claude F. Leibovici who claims this is slightly better than Cloitre's version when n is small.

A036740 a(n) = (n!)^n.

Original entry on oeis.org

1, 1, 4, 216, 331776, 24883200000, 139314069504000000, 82606411253903523840000000, 6984964247141514123629140377600000000, 109110688415571316480344899355894085582848000000000, 395940866122425193243875570782668457763038822400000000000000000000
Offset: 0

Views

Author

Keywords

Comments

(-1)^n*a(n) is the determinant of the n X n matrix m_{i,j} = T(n+i,j), 1 <= i,j <= n, where T(n,k) are the signed Stirling numbers of the first kind (A008275). Derived from methods given in Krattenthaler link. - Benoit Cloitre, Sep 17 2005
a(n) is also the number of binary operations on an n-element set which are right (or left) cancellative. These are also called right (left) cancellative magma or groupoids. The multiplication table of a right (left) cancellative magma is an n X n matrix with entries from an n element set such that the elements in each column (or row) are distinct. - W. Edwin Clark, Apr 09 2009
This sequence is mentioned in "Experimentation in Mathematics" as a sum-of-powers determinant. - John M. Campbell, May 07 2011
Determinant of the n X n matrix M_n = [m_n(i,j)] with m_n(i,j) = Stirling2(n+i,j) for 1<=i,j<=n. - Alois P. Heinz, Jul 26 2013

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., 2004, p. 207.

Crossrefs

Main diagonal of A225816.

Programs

  • Maple
    a:= n-> n!^n:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 25 2013
  • Mathematica
    Table[(n!)^n,{n,0,10}] (* Harvey P. Dale, Sep 29 2013 *)
  • Maxima
    makelist(n!^n,n,0,10); /* Martin Ettl, Jan 13 2013 */
  • PARI
    a(n)=n!^n;
    

Formula

a(n) = a(n-1)*n^n*(n-1)! = a(n-1)*A000169(n)*A000142(n) = A036740(n-1) * A000312(n)*A000142(n-1). - Henry Bottomley, Dec 06 2001
From Benoit Cloitre, Sep 17 2005: (Start)
a(n) = Product_{k=1..n} (k-1)!*k^k;
a(n) = A000178(n-1)*A002109(n) for n >= 1. (End)
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - Vaclav Kotesovec, Nov 14 2014
a(n) = Product_{k=1..n} k^n. - José de Jesús Camacho Medina, Jul 12 2016
Sum_{n>=0} 1/a(n) = A261114. - Amiram Eldar, Nov 16 2020

A166278 Square array A(n,k), n,k>=0, read by antidiagonals: A(n,k) is the total element sum of the k-fold f transform applied to the length n sequence of 1's. And f returns a sorted result after multiplying the elements in its input sequence with 1, 2, 3,... in descending size order.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 6, 10, 10, 5, 0, 1, 8, 19, 20, 15, 6, 0, 1, 12, 33, 46, 35, 21, 7, 0, 1, 16, 63, 100, 94, 56, 28, 8, 0, 1, 24, 111, 220, 242, 172, 84, 36, 9, 0, 1, 32, 201, 488, 633, 514, 290, 120, 45, 10, 0, 1, 48, 369, 1104, 1643, 1518, 984, 460, 165, 55, 11
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2009

Keywords

Examples

			A(3,4) = 33, because f([1,1,1]) = [1,2,3], (f^2)([1,1,1]) = [3,3,4], (f^3)([1,1,1]) = [4,6,9], (f^4)([1,1,1]) = [9,12,12], and 9+12+12 = 33.
Square array A(n,k) begins:
  0,  0,  0,  0,   0,   0, ...
  1,  1,  1,  1,   1,   1, ...
  2,  3,  4,  6,   8,  12, ...
  3,  6, 10, 19,  33,  63, ...
  4, 10, 20, 46, 100, 220, ...
  5, 15, 35, 94, 242, 633, ...
		

Crossrefs

Columns k=0-3 give: A001477, A000217, A000292, A070893.
Rows n=0-2 give: A000004, A000012, A029744(k+2).
Main diagonal gives A261490.

Programs

  • Maple
    f:= l-> sort([seq(sort(l, `>`)[i]*i, i=1..nops(l))]):
    A:= (n, k)-> add(i, i=(f@@k)([1$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    f[L_List] := f[L] = Sort[Reverse[Sort[L]]*Range[Length[L]]];
    A[0, ] = 0; A[n, 0] := n; A[n_, k_] := Total[Nest[f, Range[n], k-1]];
    Table[A[n, k-n], {k, 0, 15}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jun 07 2016 *)
Showing 1-3 of 3 results.