cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A364379 Greedy Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their representation in Jacobsthal greedy base (A265747).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 24, 26, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 64, 68, 69, 72, 75, 76, 80, 84, 85, 86, 87, 88, 90, 92, 93, 96, 99, 100, 104, 105, 106, 108, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

Numbers k such that A265745(k) | k.
The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n).

Crossrefs

Programs

  • Mathematica
    greedyJacobNivenQ[n_] := Divisible[n, A265745[n]]; Select[Range[120], greedyJacobNivenQ] (* using A265745[n] *)
  • PARI
    isA364379(n) = !(n % A265745(n)); \\ using A265745(n)

A265746 Jacobsthal greedy base (A265747) interpreted as base-3 numbers, then shown in decimal.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 10, 11, 12, 13, 18, 27, 28, 29, 30, 31, 36, 37, 38, 39, 40, 81, 82, 83, 84, 85, 90, 91, 92, 93, 94, 99, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 162, 243, 244, 245, 246, 247, 252, 253, 254, 255, 256, 261, 270, 271, 272, 273
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

Analogously to "Fibbinary numbers" (A003714) and "Catquaternary numbers" (A244161), this sequence could be called "Jacoternary numbers".

Crossrefs

Programs

Formula

a(0) = 0; for n >= 1, a(n) = 3^(A130249(n)-2) + a(n - A001045(A130249(n))).

A324477 k appears t+1 times, where t = A364377(k) is the number of trailing zeros in the greedy Jacobsthal representation of k, A265747(k).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 11, 12, 13, 14, 14, 15, 16, 16, 16, 17, 18, 19, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 24, 25, 26, 26, 26, 27, 28, 29, 29, 30, 31, 31, 31, 32, 32, 32, 32, 33, 34, 35, 35, 36, 37, 37, 37, 38, 39, 40, 40
Offset: 1

Views

Author

Nathan Fox and N. J. A. Sloane, Mar 09 2019

Keywords

Crossrefs

A046699, A316628, A324473 and A324475 have similar definitions.

Programs

  • Mathematica
    Table[Table[k, {IntegerExponent[A265747[k], 10] + 1}], {k, 1, 40}] // Flatten (* Amiram Eldar, Jul 21 2023 using A265747[n] *)

Extensions

More terms from Amiram Eldar, Jul 21 2023

A364377 The number of trailing 0's in the representation of n in Jacobsthal greedy base (A265747).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 3, 0, 0, 1, 0, 2, 0, 0, 1, 0, 4, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 3, 0, 0, 1, 0, 2, 0, 0, 1, 0, 4, 5, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 3, 0, 0, 1, 0, 2, 0, 0, 1, 0, 4, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 3, 0, 0, 1, 0, 2, 0, 0, 1, 0, 6, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The first position of k, for k = 0, 1, 2, ..., is A001045(k+2).
The asymptotic density of the occurrences of 2*k is 9/4^(k+2), and of 2*k+1 is 3/4^(k+2), both for k >= 0.
The asymptotic mean of this sequence is 11/12, and its asymptotic standard deviation is sqrt(283)/12.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[A265747[n], 10]; Array[a, 100] (* using A265747[n] *)
  • PARI
    a(n) = valuation(A265747(n), 10); \\ using A265747(n)

A364378 Numbers whose representation in Jacobsthal greedy base (A265747) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 20, 22, 27, 36, 41, 44, 60, 68, 84, 86, 97, 112, 123, 132, 143, 158, 169, 172, 204, 220, 252, 260, 292, 308, 340, 342, 363, 396, 417, 432, 453, 486, 507, 516, 537, 570, 591, 606, 627, 660, 681, 684, 748, 780, 844, 860, 924, 956, 1020, 1028
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

A128209(n) = A001045(n) + 1 is a term for n >= 3, since its representation is two 1's with n-3 0's between them.
A084639(n) is a term for n >= 1 since its representation is n 1's.
A014825(n) is a term for n >= 1 since its representation is n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A265747(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     2              2
   4     4             11
   5     6            101
   6     9            111
   7    12           1001
   8    20           1111
   9    22          10001
  10    27          10101
		

Crossrefs

Programs

  • Mathematica
    palJacobQ[n_] := PalindromeQ[A265747[n]]; Select[Range[0, 1000], palJacobQ] (* using A265747[n] *)
  • PARI
    is(n) = {my(dig = digits(A265747(n))); dig == Vecrev(dig);} \\ using A265747(n)

A265745 a(n) is the number of Jacobsthal numbers (A001045) needed to sum to n using the greedy algorithm.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 6, 5, 6, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

Sum of digits in "Jacobsthal greedy base", A265747.
It would be nice to know for sure whether this sequence gives also the least number of Jacobsthal numbers that add to n, i.e., that there cannot be even better nongreedy solutions.
The integer 63=21+21+21 has 3 for its 'non-greedy' solution, and a(63) = 5 for its greedy solution 63=43+11+5+3+1. - Yuriko Suwa, Jul 11 2021
Positions where a(n) is different from A372555(n) are n=63, 84, 148, 169, 191, 212, 234, 255, etc. See A372557. - Antti Karttunen, May 07 2024

Examples

			a(0) = 0, because no numbers are needed to form an empty sum, which is zero.
For n=1 we need just A001045(2) = 1, thus a(1) = 1.
For n=2 we need A001045(2) + A001045(2) = 1 + 1, thus a(2) = 2.
For n=4 we need A001045(3) + A001045(2) = 3 + 1, thus a(4) = 2.
For n=6 we form the greedy sum as A001045(4) + A001045(2) = 5 + 1, thus a(6) = 2. Alternatively, we could form the sum as A001045(3) + A001045(3) = 3 + 3, but the number of summands in that case is no less.
For n=7 we need A001045(4) + A001045(2) + A001045(2) = 5 + 1 + 1, thus a(7) = 3.
For n=8 we need A001045(4) + A001045(3) = 5 + 3, thus a(8) = 2.
For n=10 we need A001045(4) + A001045(4) = 5 + 5, thus a(10) = 2.
		

Crossrefs

Cf. A054111 (apparently the positions of the first occurrence of each n > 0).

Programs

  • Mathematica
    jacob[n_] := (2^n - (-1)^n)/3; maxInd[n_] := Floor[Log2[3*n + 1]]; A265745[n_] := A265745[n] = 1 + A265745[n - jacob[maxInd[n]]]; A265745[0] = 0; Array[A265745, 100, 0] (* Amiram Eldar, Jul 21 2023 *)
  • PARI
    A130249(n) = floor(log(3*n + 1)/log(2));
    A001045(n) = (2^n - (-1)^n) / 3;
    A265745(n) = {if(n == 0, 0, my(d = n - A001045(A130249(n))); if(d == 0, 1, 1 + A265745(d)));} \\ Amiram Eldar, Jul 21 2023
  • Python
    def greedyJ(n): n1 = (3*n+1).bit_length() - 1; return (2**n1 - (-1)**n1)//3
    def a(n): return 0 if n == 0 else 1 + a(n - greedyJ(n))
    print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 11 2021
    

Formula

a(0) = 0; for n >= 1, a(n) = 1 + a(n - A001045(A130249(n))). [This formula uses a simple greedy algorithm.]

A084639 Expansion of x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).

Original entry on oeis.org

0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364, 2729, 5460, 10921, 21844, 43689, 87380, 174761, 349524, 699049, 1398100, 2796201, 5592404, 11184809, 22369620, 44739241, 89478484, 178956969, 357913940, 715827881, 1431655764, 2863311529, 5726623060, 11453246121
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

Original name was: Generalized Jacobsthal numbers.
This is the sequence A(0,1;1,2;3) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Entries correspond to value bound adjustment for an N-bit string having M bits set and a(n+1) bit transitions. Wolfram Alpha can easily generate an entry. a(5)=41 stems from input as 1111110_2 - 1010101_2. The subtraction pattern alternates (begins at 1), and bit count is ptr+2 both terms, with the lead term having only its LSB clear. - Bill McEachen, Jul 15 2011
Also a(n) = 2*A000975(n) if n even, a(n) = 2*A000975(n) - 1 if n odd. - Michel Lagneau, Jan 11 2012
In the above comment by Bill McEachen the binary pattern (in an obvious notation) is for even n 1^(n+1)0 - (10)^((n+2)/2) and for odd n 1^(n+1)0 - (10)^((n+1)/2)1. That is for even n a(n) = sum(2^k, k=1..(n+1)) - sum(2^(2*k-1), k=1..(n+2)/2) = (2^(n+2) - 4)/3, and for odd n a(n) = sum(2^k , k=1..(n+1)) - sum(2^(2*k), k=0..(n+1)/2) = (2^(n+2) - 5)/3. This checks with the formula a(n) = (2^(n+3) + (-1)^n - 9)/6 given below. After a correspondence with Bill McEachen. - Wolfdieter Lang, Jan 24 2014
Michel Lagneau's comment above is equal to the fact that a(n) = A000975(n)-1, or in other words, this sequence gives the partial sums of Jacobsthal sequence, starting from its second 1, A001045(2). From this also follows that this sequence gives the positions of repunits in "Jacobsthal greedy base", A265747. - Antti Karttunen, Dec 17 2015
From Kensuke Matsuoka, Aug 11 2020: (Start)
This sequence is the sum of diagonally arranged powers of 2 repeated in an L shape. For example, a(1)=1, a(2) = 4, a(3)=9, a(4)= 20, a(5)=41, a(6)=84 are obtained from the figure below.
32
16 8
8 4 2
4 2 1 2
2 1 2 4 8
1 2 4 8 16 32
From this figure, a(n) = a(n-2) + 2^n is obtained. (End)
For n > 0, also the total distance that the disks travel from the leftmost peg to the middle peg in the Tower of Hanoi puzzle, in the unique solution with 2^n - 1 moves (see links). - Sela Fried, Dec 17 2023

Crossrefs

Programs

  • Magma
    [2^(n+2)/3+(-1)^n/6-3/2: n in [0..35]]; // Vincenzo Librandi, Aug 08 2011
    
  • Maple
    a:=proc(n) (2^(n+3) + (-1)^n - 9)/6 end proc: [seq(a(n), n=0..33)]; # Wolfdieter Lang, Jan 24 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2 a[n - 2] + 3; Array[a, 32, 0] (* Or *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = 3 a[n - 1] - 2 a[n - 2] + (-1)^n; Array[a, 32, 0]
    CoefficientList[Series[x*(1+2*x)/((1+x)*(1-x)*(1-2*x)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{0,1,4},40]  (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • PARI
    a(n)=2^(n+2)/3-if(n%2,5,4)/3 \\ Charles R Greathouse IV, Aug 08 2011
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1+x)*(1-x)*(1-2*x)) + O(x^100))) \\ Altug Alkan, Dec 17 2015
    
  • Python
    def A084639(n): return (4<Chai Wah Wu, Apr 25 2025

Formula

G.f.: x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: 4*exp(2*x)/3-3*exp(x)/2+exp(-x)/6.
a(n) = a(n-1)+2*a(n-2)+3, a(0)=0, a(1)=1.
a(n) = 2^(n+2)/3+(-1)^n/6-3/2.
a(n) = A001045(n+2) - A000034(n).
a(n) = 5*a(n-2)-4*a(n-4). Cf. A084640, A101622. - Paul Curtz, Apr 03 2008
a(n) = 2*a(n-1) + a(n-2) -2*a(n-3). - R. J. Mathar, Jun 28 2010
a(n) = a(n-1)+2*a(n-2)+3, n>1. - Gary Detlefs, Dec 19 2010
a(n) = 3*a(n-1)-2*a(n-2) +(-1)^n, n>1. - Gary Detlefs, Dec 19 2010
a(n) = a(n-2) + 2^n for n >= 2. - Kensuke Matsuoka, Aug 11 2020

Extensions

Replaced duplicate of a formula by another recurrence - R. J. Mathar, Jun 28 2010

A276326 Numbers expressed in greedy A001563-base.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 140, 141, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 240, 241, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 340, 341, 400
Offset: 0

Views

Author

Antti Karttunen, Aug 30 2016

Keywords

Comments

Terms A001563(1) = 1, A001563(2) = 4, A001563(3) = 18, ... give the base values for the digit positions from 1 onward. Digit places are filled by always trying to find the largest possible term of A001563 that still fits into the sum.
A130744(8) = 3225600 = 10*A001563(8) is the first number which yields an ambiguous representation when expressed in decimal, because in this base it is actually "A0000000" (where digit "A" stands for ten).

Examples

			To recover n from a(n) the digits in positions i = 1, 2, 3, ... (starting indexing from the least significant digit at right) are multiplied by A001563(i) and added together:
  ----------------
   n         a(n)
  ----------------
   0           0
   1           1
   2           2
   3           3
   4          10
   5          11
   6          12
   7          13
   8          20
   9          21
  10          22
  11          23
  12          30
  13          31
  14          32
  15          33
  16          40
  17          41 (as 4*A001563(2) + 1*A001563(1) = 17)
  18         100 (as 1*A001563(3) + 0*A001563(2) + 0*A001563(1) = 18)
and:
3225599 99111111 (as 3225599 = 9*b(8) + 9*b(7) + b(6) + b(5) + b(4) + b(3) + b(2) + b(1)), where b(n) = A001563(n).
		

Crossrefs

Cf. A276327 (the least significant nonzero digit).
Cf. A276328 (the sum of digits).
Cf. A276333 (the most significant digit).
Cf. A276336 (a largest digit).
Cf. A276337 (number of nonzero digits).
Cf. A033312 (repunits).
Cf. A276091 (no digits larger than one).
Differs from A007090 for the first time at n=16 and from A055655 at n=18.

Programs

  • Mathematica
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], (# #!) &[# - i]]], {i, 0, # - 1}] &@ NestWhile[# + 1 &, 0, (# #!) &[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[FromDigits@ f@ n, {n, 72}] (* Michael De Vlieger, Aug 31 2016 *)
  • Scheme
    (define (A276326 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((dig (A276333 n))) (if (> dig 9) (error "A276326: ambiguous representation of n, digit > 9 would be needed: " n dig) (loop (A276335 n) (+ s (* dig (expt 10 (- (A258198 n) 1))))))))))

A372288 Array read by upward antidiagonals: A(n, k) = A265745(A372282(n, k)), n,k >= 1, where A265745(n) is the sum of digits in "Jacobsthal greedy base".

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Comments

Collatz conjecture is equal to the claim that each column will eventually settle to constant 1's, somewhere under its topmost row. This works as only the bisection A002450 of Jacobsthal numbers (A001045) contains numbers of the form 4k+1, while the other bisection contains only numbers of the form 4k+3, which do not occur among the range of A372351. See also the comments in A371094.

Examples

			Array begins:
n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13     14 15    16 17 18 19 20    21 22
---+----------------------------------------------------------------------------
1  | 1, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3,     3, 3,    3, 3, 3, 3, 5,    5, 1,
2  | 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 5, 5,     5, 3,    5, 3, 3, 3, 5,    5, 3,
3  | 1, 1, 1, 3, 3, 3, 1, 5, 1, 3, 1, 3, 3,     5, 3,    5, 5, 1, 3, 3,    5, 3,
4  | 1, 1, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 3,     5, 3,    3, 3, 1, 3, 5,    5, 3,
5  | 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3,     5, 1,    5, 3, 1, 3, 3,    3, 3,
6  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3,     3, 1,    5, 3, 1, 1, 5,    5, 3,
7  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    3, 3, 1, 1, 3,    5, 3,
8  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 3,    3, 3,
9  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     3, 1,    5, 1, 1, 1, 3,    5, 1,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 3,    5, 1,
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1, 2155, 1, 1, 1, 1,    5, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1, 6251, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10347, 1,    5, 1, 1, 1, 1,    5, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1,    5, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    7, 1, 1, 1, 1,    5, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1,    7, 1,
		

Crossrefs

Cf. also array A372561 (formed by columns whose indices in this array are given by A372443).

Programs

A364380 Numbers k such that k and k+1 are both greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 20, 21, 26, 27, 32, 42, 43, 44, 45, 51, 56, 68, 75, 84, 85, 86, 87, 92, 99, 104, 105, 111, 115, 116, 125, 128, 135, 144, 155, 170, 171, 176, 182, 183, 195, 204, 213, 219, 224, 260, 264, 267, 275, 304, 305, 324, 329, 341, 344
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n), and the representation of A001045(n) + 1 is 2 if n <= 2 and otherwise n-3 0's between two 1's, so A265745(A001045(n) + 1) = 2 which divides A001045(n) + 1.

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {greedyJacobNivenQ[k]}]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecGreedyJN[350, 2] (* using the function greedyJacobNivenQ[n] from A364379 *)
  • PARI
    lista(kmax, len) = {my(c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), isA364379(k)); if(vecsum(c) == len, print1(k-len+1, ", ")));} \\ using the function isA364379(n) from A364379
    lista(350, 2)
Showing 1-10 of 13 results. Next