cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A217843 Numbers which are the sum of one or more consecutive nonnegative cubes.

Original entry on oeis.org

0, 1, 8, 9, 27, 35, 36, 64, 91, 99, 100, 125, 189, 216, 224, 225, 341, 343, 405, 432, 440, 441, 512, 559, 684, 729, 748, 775, 783, 784, 855, 1000, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1331, 1584, 1728, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2197
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Comments

Contains A000578 (cubes), A005898 (two consecutive cubes), A027602 (three consecutive cubes), A027603 (four consecutive cubes) etc. - R. J. Mathar, Nov 04 2012
See A265845 for sums of consecutive positive cubes in more than one way. - Reinhard Zumkeller, Dec 17 2015
From Lamine Ngom, Apr 15 2021: (Start)
a(n) can always be expressed as the difference of the squares of two triangular numbers (A000217).
A168566 is the subsequence A000217(n)^2 - 1.
a(n) is also the product of two nonnegative integers whose sum and difference are both promic.
See example and formula sections for details. (End)

Examples

			From _Lamine Ngom_, Apr 15 2021: (Start)
Arrange the positive terms in a triangle as follows:
n\k |   1    2    3    4    5    6    7
----+-----------------------------------
  0 |   1;
  1 |   8,   9;
  2 |  27,  35,  36;
  3 |  64,  91,  99, 100;
  4 | 125, 189, 216, 224, 225;
  5 | 216, 341, 405, 432, 440, 441;
  6 | 343, 559, 684, 748, 775, 783, 784;
Column 1: cubes = A000217(n+1)^2 - A000217(n)^2.
The difference of the squares of two consecutive triangular numbers (A000217) is a cube (A000578).
Column 2: sums of 2 consecutive cubes (A027602).
Column 3: sums of 3 consecutive cubes (A027603).
etc.
Column k: sums of k consecutive cubes.
Row n: A000217(n)^2 - A000217(m)^2, m < n.
T(n,n) = A000217(n)^2 (main diagonal).
T(n,n-1) = A000217(n)^2 - 1 (A168566) (2nd diagonal).
Now rectangularize this triangle as follows:
n\k |   1    2     3     4    5     6   ...
----+--------------------------------------
  0 |   1,   9,   36,  100,  225,  441, ...
  1 |   8,  35,   99,  224,  440,  783, ...
  2 |  27,  91,  216,  432,  775, 1287, ...
  3 |  64, 189,  405,  748, 1260, 1989, ...
  4 | 125, 341,  684, 1196, 1925, 2925, ...
  5 | 216, 559, 1071, 1800, 2800, 4131, ...
  6 | 343, 855, 1584, 2584, 3915, 5643, ...
The general form of terms is:
T(n,k) = [n^4 + A016825(k)*n^3 + A003154(k)*n^2 + A300758(k)*n]/4, sum of n consecutive cubes after k^3.
This expression can be factorized into [n*(n + A005408(k))*(n*(n + A005408(k)) + 4*A000217(k))]/4.
For k = 1, the sequence provides all cubes: T(n,1) = A000578(k).
For k = 2, T(n,2) = A005898(k), centered cube numbers, sum of two consecutive cubes.
For k = 3, T(n,3) = A027602(k), sum of three consecutive cubes.
For k = 4, T(n,4) = A027603(k), sum of four consecutive cubes.
For k = 5, T(n,5) = A027604(k), sum of five consecutive cubes.
T(n,n) = A116149(n), sum of n consecutive cubes after n^3 (main diagonal).
For n = 0, we obtain the subsequence T(0,k) = A000217(n)^2, product of two numbers whose difference is 0*1 (promic) and sum is promic too.
For n = 1, we obtain the subsequence T(1,k) = A168566(x), product of two numbers whose difference is 1*2 (promic) and sum is promic too.
For n = 2, we obtain the subsequence T(2,k) = product of two numbers whose difference is 2*3 (promic) and sum is promic too.
etc.
For n = x, we obtain the subsequence formed by products of two numbers whose difference is the promic x*(x+1) and sum is promic too.
Consequently, if m is in the sequence, then m can be expressed as the product of two nonnegative integers whose sum and difference are both promic. (End)
		

Crossrefs

Cf. A265845 (subsequence).
Cf. A000217 (triangular numbers), A046092 (4*A000217).
Cf. A168566 (A000217^2 - 1).
Cf. A002378 (promics), A016825 (singly even numbers), A003154 (stars numbers).
Cf. A000330 (square pyramidal numbers), A300758 (12*A000330).
Cf. A005408 (odd numbers).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a217843 n = a217843_list !! (n-1)
    a217843_list = f (singleton (0, (0,0))) (-1) where
       f s z = if y /= z then y : f s'' y else f s'' y
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 17 2015, May 12 2015
    
  • Mathematica
    nMax = 3000; t = {0}; Do[k = n; s = 0; While[s = s + k^3; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/3)}]; t = Union[t]
  • PARI
    lista(nn) = {my(list = List([0])); for (i=1, nn, my(s = 0); forstep(j=i, 1, -1, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ Michel Marcus, Nov 13 2020

Formula

a(n) >> n^2. Probably a(n) ~ kn^2 for some k but I cannot prove this. - Charles R Greathouse IV, Aug 07 2013
a(n) is of the form [x*(x+2*k+1)*(x*(x+2*k+1)+2*k*(k+1))]/4, sum of n consecutive cubes starting from (k+1)^3. - Lamine Ngom, Apr 15 2021

Extensions

Name edited by N. J. A. Sloane, May 24 2021

A062682 Numbers that are sums of two or more consecutive (positive) cubes in more than 1 way.

Original entry on oeis.org

33075, 89559, 105525, 164800, 188784, 189189, 353241, 443456, 608391, 1271600, 2370816, 3132116, 3132675, 3184236, 5821200, 9018000, 9769375, 11437525, 20793591, 22153600, 24359616, 28685440, 47651373, 55454525, 56078784, 61765200, 77053284
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			33075 = 11^3 + 12^3 + ... + 19^3 = 15^3 + 16^3 + ... + 20^3.
The first number having three representations is 246153726441216 = (2144^3 + ... + 5631^3) = (3047^3 + ... + 5720^3) = (8072^3 + ... + 8504^3). - _Robert G. Wilson v_, Nov 16 2012
		

Crossrefs

Subsequence of A265377 and of A265845.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a062682 n = a062682_list !! (n-1)
    a062682_list = f (singleton (1 + 2^3, (1, 2))) 0 0 where
       f s z z' = if y == z && z' /= z then y : f s'' y z else f s'' y z
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 16 2015
  • Mathematica
    nn = 10^10; t1 = {}; s = 1; i = 1; While[i++; s = s + i^3; s < nn/2, AppendTo[t1, s]]; t = t1; i = 0; While[Length[t1] > 1, i++;  t1 = Rest[t1] - i^3; t = Join[t, t1]]; t = Select[t, # < t1[[1]] &]; t2 = Sort[Select[Tally[t], #[[2]] > 1 &]]; Transpose[t2][[1]] (* T. D. Noe, Nov 16 2012 *)
  • PARI
    list(lim)=my(v=List(),u=v,s,y);for(x=1,(lim\2)^(1/3),s=x^3;y=x;while(1,s+=y++^3;if(s>lim,break,listput(v,s))));v=vecsort(Vec(v));for(i=2,#v,if(v[i]==v[i-1],listput(u,v[i])));vecsort(Vec(u),,8) \\ Charles R Greathouse IV, Nov 16 2012
    

Extensions

Missing a(23)-a(24) from Charles R Greathouse IV, Nov 16 2012

A131643 Cubes that are also sums of three or more consecutive positive cubes.

Original entry on oeis.org

216, 8000, 64000, 216000, 343000, 5832000, 35937000, 157464000, 1540798875, 3951805941, 22069810125, 23295638016, 58230605376, 170400029184, 4767078987000, 19814511816000, 241152896222784, 565199024832000, 731189187729000, 5399901725184000, 13389040129314816, 15517248640897024
Offset: 1

Views

Author

Tanya Khovanova, Sep 08 2007

Keywords

Comments

Note that by Fermat's theorem no cube is the sum of two positive cubes.
All entries have the form A000537(j) - A000537(i-1) with 1 <= i < j, for example (j,i) = (5,3), (14,11), (22,3), (30,6), (34,15), (69,6), (109,11). - R. J. Mathar, Sep 14 2007 [Presumably this comment refers just to the terms shown, and not to every term in the sequence. - N. J. A. Sloane, Dec 19 2015]
Subsequence of A265845 (numbers that are sums of consecutive positive cubes in more than one way) which is sparse: among the first 1000 terms of A265845, only 17 are cubes. - Jonathan Sondow, Jan 10 2016

Examples

			216 = 27 + 64 + 125.
Note that "positive" is needed in the definition, otherwise the sequence would contain 8 = (-1)^3 + 0^3 + 1^3 + 2^3. - _N. J. A. Sloane_, Dec 19 2015
		

Crossrefs

a(n) = A097811(n)^3. - Donovan Johnson, Nov 09 2012

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ Plus @@ Table[i^3, {i, k, j}], {k, 1000}, {j, k + 1, 1000}]]], # <= 1000^3 && IntegerQ[ #^(1/3)] &]

Extensions

More terms from R. J. Mathar, Sep 14 2007
More terms from Donovan Johnson, Mar 09 2008
Name edited by Jon E. Schoenfield, Dec 07 2015

A097811 Numbers n such that n^3 is the sum of three or more consecutive positive cubes.

Original entry on oeis.org

6, 20, 40, 60, 70, 180, 330, 540, 1155, 1581, 2805, 2856, 3876, 5544, 16830, 27060, 62244, 82680, 90090, 175440, 237456, 249424, 273819, 413820, 431548, 534660, 860706, 1074744, 1205750, 1306620, 1630200, 1764070, 1962820, 1983150
Offset: 1

Views

Author

T. D. Noe, Aug 25 2004; Sep 07 2004

Keywords

Comments

These numbers were found by exhaustive search. The sums are not unique; for n=2856, there are two representations. The Mathematica code prints n, the range of cubes in the sum and the number of cubes in the sum. For instance, 82680^3 equals the sum of 6591 cubes! A faster program was used to check all sums s of consecutive cubes such that s < 2000000^3.
2856^3 is the only cube < 2*10^23 that is a sum in two different ways. 2856^3 = 213^3 +...+ 555^3 = 273^3 +...+ 560^3. - Donovan Johnson, Feb 22 2011
The terms of this sequence tend to contain only small primes. Is a(n)^(1/3) an upper bound for the largest prime factor of a(n)? - Ralf Stephan, May 22 2013
Note that by Fermat's theorem no cube is the sum of two positive cubes.
The cubes of the terms form a subsequence of A265845 (numbers that are sums of consecutive positive cubes in more than one way) which is sparse: among the first 1000 terms of A265845, only 17 are cubes. - Jonathan Sondow, Jan 10 2016

Examples

			20 is in this sequence because 11^3 + 12^3 + 13^3 + 14^3 = 20^3.
		

Crossrefs

Cf. A097812 (n^2 is the sum of consecutive squares), A265845.
See A131643 for the actual cubes.

Programs

  • Mathematica
    g[m0_, m1_] := (m1-m0+1)(m0+m1)(m0^2+m1^2+m1-m0)/4; lst={}; Do[n=g[m0, m1]^(1/3); If[IntegerQ[n], Print[{n, m0, m1, m1-m0+1}]; AppendTo[lst, n]], {m1, 2, 14000}, {m0, m1-1, 1, -1}]; Union[lst]

Formula

a(n) = A131643(n)^(1/3). - Jonathan Sondow, Jan 10 2016

Extensions

Name edited by Altug Alkan, Dec 07 2015

A297199 a(n) = number of partitions of n into consecutive positive cubes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 15 2018

Keywords

Examples

			    1 = 1^3,                   so   a(1) = 1.
    8 = 2^3,                   so   a(8) = 1.
    9 = 1^3 + 2^3,             so   a(9) = 1.
   27 = 3^3,                   so  a(27) = 1.
   35 = 2^3 + 3^3,             so  a(35) = 1.
   36 = 1^3 + 2^3 + 3^3,       so  a(36) = 1.
   64 = 4^3,                   so  a(64) = 1.
   91 = 3^3 + 4^3,             so  a(91) = 1.
   99 = 2^3 + 3^3 + 4^3,       so  a(99) = 1.
  100 = 1^3 + 2^3 + 3^3 + 4^3, so a(100) = 1.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    F:= (a, b) -> (b^2*(b+1)^2-a^2*(a-1)^2)/4:
    A:= Vector(N):
    for b from 1 to floor(N^(1/3)) do
      for a from b to 1 by -1 do
         v:= F(a,b);
         if v > N then break fi;
         A[v]:= A[v]+1;
    od od:
    convert(A,list); # Robert Israel, Jan 15 2018, corrected Jan 29 2018
  • PARI
    A297199(n) = { my(s=0, k=1, c); while((c=k^3) <= n, my(u=n-c, i=k); while(u>0, i++; c = i^3; u=u-c); s += (!u); k++); (s); }; \\ Antti Karttunen, Aug 22 2019

Formula

a(A217843(n)) >= 1 for n > 1.
a(n) >= 2 for n in A265845. - Robert Israel, Jan 15 2018
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^3). - Ilya Gutkovskiy, Apr 18 2019
a(A000578(n)) = A307609(n). - Antti Karttunen, Aug 22 2019

A338447 Sums of consecutive odd positive cubes.

Original entry on oeis.org

1, 27, 28, 125, 152, 153, 343, 468, 495, 496, 729, 1072, 1197, 1224, 1225, 1331, 2060, 2197, 2403, 2528, 2555, 2556, 3375, 3528, 4257, 4600, 4725, 4752, 4753, 4913, 5572, 6859, 6903, 7632, 7975, 8100, 8127, 8128, 8288, 9261, 10485, 11772, 11816, 12167, 12545, 12888, 13013
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2020

Keywords

Examples

			495 is in the sequence because 495 = 3^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(list = List()); forstep (i=1, nn, 2, my(s = 0); forstep(j=i, 1, -2, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ Michel Marcus, Nov 13 2020
Showing 1-6 of 6 results.