cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A291698 a(n) = [x^n] Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 1, 2, 12, 20, 55, 294, 497, 1224, 2520, 14410, 21912, 54300, 104286, 220710, 1105215, 1697552, 3839382, 7356762, 14873580, 26275620, 132112596, 188666126, 423247104, 772560600, 1535398150, 2632049290, 4975242048, 21273166572, 30649985160, 64824339630, 116604788800, 223181224992
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

The number of partitions of n into distinct parts where each part can be colored in n different ways. For example, there are 4 partitions of 6 into distinct parts, namely 6, 5 + 1, 4 + 2 and 3 + 2 + 1; allowing for the colorings gives a(6) = 6 + 6*6 + 6*6 + 6*6*6 = 294. - Peter Bala, Aug 31 2017

Crossrefs

Main diagonal of A286957.

Programs

  • Maple
    seq(coeff(mul(1+n*x^k,k=1..n),x,n),n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + n x^k, {k, 1, n}], {x, 0, n}], {n, 0, 32}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/(1 + n), {x, 0, n}], {n, 0, 32}]

Formula

a(n) = A286957(n,n).
a(n) == 0 (mod n); a(n) == n (mod n^2). - Peter Bala, Aug 31 2017
Conjecture: a(n) ~ exp(sqrt(2*(log(n)^2 + Pi^2/3)*n)) * (log(n)^2 + Pi^2/3)^(1/4) / (sqrt(Pi) * (2*n)^(5/4)). - Vaclav Kotesovec, Sep 15 2017

A265949 Expansion of Product_{k>=1} (1 + k^k*x^k).

Original entry on oeis.org

1, 1, 4, 31, 283, 3489, 50913, 890635, 17891170, 409850236, 10494427982, 297780829216, 9261266862273, 313453533534739, 11464487066049791, 450644378868285130, 18942868694407904729, 847930346323808122469, 40266107916200371331007, 2021842180288047801103956
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1+k^k*x^k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+k^k*x^k))) \\ G. C. Greubel, Oct 31 2018
    

Formula

a(n) ~ n^n * (1 + exp(-1)/n + ((1/2)*exp(-1) + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d + 1)*d^(k+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018

A292189 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 7, 3, 1, 1, 16, 35, 25, 15, 4, 1, 1, 32, 97, 91, 77, 25, 5, 1, 1, 64, 275, 337, 405, 161, 43, 6, 1, 1, 128, 793, 1267, 2177, 1069, 393, 64, 8, 1, 1, 256, 2315, 4825, 11925, 7313, 3799, 726, 120, 10
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   1, 1,  1,  1,   1, ...
   1, 2,  4,  8,  16, ...
   2, 5, 13, 35,  97, ...
   2, 7, 25, 91, 337, ...
		

Crossrefs

Columns k=0..5 give A000009, A022629, A092484, A265840, A265841, A265842.
Rows 0+1, 2, 3 give A000012, A000079, A007689.
Main diagonal gives A292190.
Cf. A292166.

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    m = 14;
    col[k_] := col[k] = Product[1 + j^k*x^j, {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

A292305 a(n) = [x^n] Product_{k>=1} (1 + n^k*x^k).

Original entry on oeis.org

1, 1, 4, 54, 512, 9375, 186624, 4117715, 100663296, 3099363912, 100000000000, 3423740047332, 133741506723840, 5451751918660554, 244464150162276352, 11823135040283203125, 590295810358705651712, 31435129951680797038726, 1809934771463640728469504
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+n^k*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    Flatten[{1, Table[n^n*PartitionsQ[n], {n, 1, 20}]}]

Formula

a(n) = n^n * A000009(n).
a(n) ~ exp(Pi*sqrt(n/3)) * n^(n-3/4) / (4*3^(1/4)).

A292194 Sum of n-th powers of products of terms in all partitions of n.

Original entry on oeis.org

1, 1, 5, 36, 610, 13225, 1173652, 92137513, 27960729094, 14612913824364, 11885159817456154, 23676862215173960082, 144210774157588042096815, 778807208565930895328294712, 15863318347221014170216633451982, 908978343753718115412387406378667615
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.
So a(5) = 5^5 + (4*1)^5 + (3*2)^5 + (3*1*1)^5 + (2*2*1)^5 + (2*1*1*1)^5 + (1*1*1*1*1)^5 = 13225.
		

Crossrefs

Main diagonal of A292193.
Cf. A292190.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          `if`(i>n, 0, i^k*b(n-i, i, k))+b(n, i-1, k))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1 - k^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 15 2017 *)
  • PARI
    {a(n) = polcoeff(1/prod(k=1, n, 1-k^n*x^k+x*O(x^n)), n)}

Formula

a(n) = [x^n] Product_{k=1..n} 1/(1 - k^n*x^k).
From Vaclav Kotesovec, Sep 15 2017: (Start)
a(n) ~ 3^(n^2/3) if mod(n,3)=0
a(n) ~ 3^(n*(n-4)/3)*2^(2*n+1) if mod(n,3)=1
a(n) ~ 3^(n*(n-2)/3)*2^n if mod(n,3)=2
(End)

A292306 a(n) = [x^n] Product_{k>=1} (1 + n^n*x^k).

Original entry on oeis.org

1, 1, 4, 756, 65792, 19534375, 101564310279744, 558547898753326097, 9444733810164237336576, 174449211609498720646587480, 10000000004000000000400000000010000000000, 6626407607852766876000106671521201448502431912
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 14; Table[SeriesCoefficient[Product[(1+n^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]

Formula

Conjecture: log(a(n)) ~ (sqrt(2)*n^(3/2) - n/2)*log(n). - Vaclav Kotesovec, Aug 22 2018

A292072 Main diagonal of A292068.

Original entry on oeis.org

1, -1, -3, -20, 66, 4439, 454420, 4873175, -3803048954, -7320203267692, -1403057989033446, 6669491545211096686, 78492109668913945526447, 69591502229308312804788424, -6243846072108996200105800383026, -604234376454072219680822138902122079
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    g:= proc(n,k) option remember; `if`(n=0, 1,
          -add(b(n-i$2, k)*g(i, k), i=0..n-1))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 12 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = Function[m, If[m < n, 0, If[n == m, i!^k, b[n, i - 1, k] + If[i > n, 0, i^k*b[n - i, i - 1, k]]]]][i*(i + 1)/2];
    g[n_, k_] := g[n, k] = If[n == 0, 1, -Sum[b[n-i, n-i, k]*g[i, k], {i, 0, n-1}]];
    a[n_] := g[n, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 03 2018, after Alois P. Heinz *)
  • PARI
    {a(n) = polcoeff(1/prod(k=1, n, 1+k^n*x^k+x*O(x^n)), n)}
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import factorial as f
    @cacheit
    def b(n, i, k):
        m=i*(i + 1)/2
        return 0 if mn else i**k*b(n - i, i - 1, k))
    @cacheit
    def g(n, k): return 1 if n==0 else -sum([b(n - i, n - i, k)*g(i, k) for i in range(n)])
    def a(n): return g(n, n)
    print([a(n) for n in range(16)]) # Indranil Ghosh, Sep 14 2017, after Maple program

Formula

a(n) = [x^n] Product_{k=1..n} 1/(1 + k^n*x^k).
Showing 1-7 of 7 results.