A157459
Expansion of 72*x^2 / (1 - 323*x + 323*x^2 - x^3).
Original entry on oeis.org
0, 72, 23256, 7488432, 2411251920, 776415629880, 250003421569512, 80500325329753056, 25920854752758914592, 8346434730063040745640, 2687526062225546361181560, 865375045601895865259716752, 278648077157748243067267612656, 89723815469749332371794911558552
Offset: 1
-
LinearRecurrence[{323,-323,1},{0,72,23256},20] (* Harvey P. Dale, Feb 28 2021 *)
-
concat(0, Vec(72*x^2/(1-323*x+323*x^2-x^3)+O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n) = -round((161+72*sqrt(5))^(-n)*(-1+(161+72*sqrt(5))^n)*(9+4*sqrt(5)+(-9+4*sqrt(5))*(161+72*sqrt(5))^n))/80 \\ Colin Barker, Jul 25 2016
A298101
Expansion of x*(1 + x)/((1 - x)*(1 - 322*x + x^2)).
Original entry on oeis.org
0, 1, 324, 104329, 33593616, 10817040025, 3483053294436, 1121532343768369, 361129931640120384, 116282716455774995281, 37442673568827908360100, 12056424606446130716956921, 3882131280602085262951768464, 1250034215929265008539752488489
Offset: 0
-
P:=proc(n) trunc(evalf(((2+sqrt(5))^(4*n)+(2-sqrt(5))^(4*n)-2)/320,1000));
end: seq(P(i),i=0..13); # Paolo P. Lava, Jan 18 2018
-
CoefficientList[x (1 + x)/((1 - x) (1 - 322 x + x^2)) + O[x]^20, x]
-
makelist(coeff(taylor(x*(1+x)/((1-x)*(1-322*x+x^2)), x, 0, n), x, n), n, 0, 20);
-
first(n) = Vec(x*(1 + x)/((1 - x)*(1 - 322*x + x^2)) + O(x^n), -n) \\ Iain Fox, Jan 12 2018
-
gf = x*(1+x)/((1-x)*(1-322*x+x^2))
print(taylor(gf, x, 0, 20).list())
A201003
Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.
Original entry on oeis.org
0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0
5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
-
m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
-
concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
A201004
Triangular numbers, T(m), that are five-quarters of another triangular number; T(m) such that 4*T(m) = 5*T(k) for some k.
Original entry on oeis.org
0, 45, 14535, 4680270, 1507032450, 485259768675, 156252138480945, 50312703331095660, 16200534220474321620, 5216521706289400466025, 1679703788890966475738475, 540859403501184915787322970, 174155048223592651917042257910, 56077384668593332732371819724095
Offset: 0
4*0 = 5*0.
4*45 = 5*36.
4*14535 = 5*11628.
4*4680270 = 5*3744216.
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(45*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{323, -323, 1}, {0, 45, 14535}, 20] (* T. D. Noe, Feb 15 2012 *)
CoefficientList[Series[-45 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
-
concat(0, Vec(45*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
Showing 1-4 of 4 results.
Comments