A255961
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 7, 12, 18, 25, 33, 42, ...
0, 6, 18, 37, 64, 100, 146, 203, ...
0, 13, 47, 111, 215, 370, 588, 882, ...
0, 24, 110, 303, 660, 1251, 2160, 3486, ...
0, 48, 258, 804, 1938, 4005, 7459, 12880, ...
0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
Columns k=0-10 give:
A000007,
A000219,
A161870,
A255610,
A255611,
A255612,
A255613,
A255614,
A193427,
A316461,
A316462.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)
A299208
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).
Original entry on oeis.org
1, 1, 0, -1, -2, -1, 1, 3, 3, 1, -3, -6, -5, 1, 9, 12, 5, -9, -20, -18, 1, 26, 38, 21, -21, -61, -62, -9, 72, 120, 81, -44, -177, -205, -64, 186, 366, 293, -63, -496, -657, -304, 445, 1084, 1014, 33, -1341, -2053, -1238, 959, 3132, 3378, 770, -3474, -6260, -4619, 1656, 8809, 10929, 4306, -8520
Offset: 0
-
nmax = 60; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
A299162
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - k*x^k)).
Original entry on oeis.org
1, 1, 2, 6, 17, 49, 135, 380, 1051, 2925, 8119, 22548, 62574, 173767, 482360, 1339126, 3717700, 10321163, 28653557, 79548612, 220843925, 613110573, 1702128034, 4725475979, 13118945083, 36421037100, 101112695940, 280710759278, 779313926949, 2163544401343, 6006468273440
Offset: 0
-
nmax = 30; CoefficientList[Series[1/(1 - x Product[1/(1 - k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
A299164
Expansion of 1/(1 - x*Product_{k>=1} (1 + k*x^k)).
Original entry on oeis.org
1, 1, 2, 5, 14, 35, 91, 233, 597, 1517, 3885, 9922, 25333, 64683, 165181, 421828, 1077277, 2750993, 7025168, 17940298, 45814165, 116996152, 298774246, 762982615, 1948434235, 4975732669, 12706571546, 32448880807, 82864981016, 211613009498, 540397935771, 1380018797044, 3524165721799
Offset: 0
-
nmax = 32; CoefficientList[Series[1/(1 - x Product[1 + k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A299167
Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)^k).
Original entry on oeis.org
1, 1, 2, 5, 14, 36, 94, 243, 628, 1619, 4178, 10776, 27793, 71682, 184879, 476832, 1229830, 3171942, 8180989, 21100215, 54421187, 140361900, 362018270, 933709453, 2408202606, 6211182512, 16019743522, 41317765457, 106565859669, 274852289679, 708892898170, 1828360759013, 4715667307920
Offset: 0
-
nmax = 32; CoefficientList[Series[1/(1 - x Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A299211
Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)^k).
Original entry on oeis.org
1, 1, 0, -3, -6, -4, 12, 39, 52, -9, -186, -392, -285, 610, 2291, 3200, -150, -10626, -23487, -18841, 32957, 134848, 198246, 13961, -605248, -1409604, -1234474, 1744213, 7898753, 12209679, 2161666, -34344627, -84393284, -79993042, 90692470, 461463974, 749309529, 207447895, -1939084232
Offset: 0
Cf.
A067687,
A073592,
A299105,
A299106,
A299108,
A299162,
A299164,
A299166,
A299167,
A299208,
A299209,
A299210,
A299212.
-
N:= 100: # for a(0)..a(N)
S:= series(1/(1-x*mul((1-x^k)^k,k=1..N)),x,N+1):
seq(coeff(S,x,i),i=0..N); # Robert Israel, Feb 05 2023
-
nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A299209
Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).
Original entry on oeis.org
1, 1, 0, -3, -6, -5, 11, 37, 59, 13, -155, -402, -415, 263, 1981, 3748, 2289, -6643, -22642, -31322, -187, 99040, 229410, 216823, -230029, -1223267, -2097812, -955237, 4468902, 13393758, 16752461, -3891704, -62382597, -131974181, -106680562, 173622424, 741553622, 1163057561, 329176545
Offset: 0
Cf.
A022661,
A067687,
A299105,
A299106,
A299108,
A299162,
A299164,
A299166,
A299167,
A299208,
A299210,
A299211,
A299212.
-
nmax = 38; CoefficientList[Series[1/(1 - x Product[1 - k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A299210
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + k*x^k)).
Original entry on oeis.org
1, 1, 0, -2, -5, -3, 5, 20, 27, 17, -53, -152, -192, 31, 576, 1110, 694, -1297, -4519, -6160, -1107, 13665, 31914, 30643, -19339, -119260, -196142, -103318, 289543, 859631, 1062684, 13710, -2690348, -5675946, -4940757, 4167527, 21343918, 33874107, 16524162, -51704908, -150454546
Offset: 0
Cf.
A022693,
A067687,
A299105,
A299106,
A299108,
A299162,
A299164,
A299166,
A299167,
A299208,
A299209,
A299211,
A299212.
-
nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
A299212
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
Original entry on oeis.org
1, 1, 0, -2, -5, -4, 4, 21, 35, 23, -47, -165, -239, -78, 479, 1273, 1508, -138, -4429, -9451, -8845, 6207, 37937, 67123, 45144, -83355, -308078, -455109, -166872, 873799, 2393041, 2916869, -73472, -8133572, -17828640, -17294146, 10383571, 70275162, 127401305, 90368779, -147825714
Offset: 0
Cf.
A067687,
A255528,
A299105,
A299106,
A299108,
A299162,
A299164,
A299166,
A299167,
A299208,
A299209,
A299210,
A299211.
-
nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
Showing 1-9 of 9 results.
Comments