A284597 a(n) is the least number that begins a run of exactly n consecutive numbers with a nondecreasing number of divisors, or -1 if no such number exists.
46, 5, 43, 1, 1613, 241, 17011, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1
Examples
241 = 241^1 => 2 divisors 242 = 2^1 * 11^2 => 6 divisors 243 = 3^5 => 6 divisors 244 = 2^2 * 61^1 => 6 divisors 245 = 5^1 * 7^2 => 6 divisors 246 = 2^1 * 3^1 * 41^1 => 8 divisors 247 = 13^1 * 19^1 => 4 divisors So, 247 breaks the chain. 241 is the lowest number that is the beginning of exactly 6 consecutive numbers with a nondecreasing number of divisors. So it is the 6th term in the sequence. Note also that a(5) is not 242, even though tau evaluated at 242, 243,..., 246 gives 5 nondecreasing values, because here we deal with full runs and 242 belongs to the run of 6 values starting at 241.
Links
- Robert Israel, Dickson's conjecture implies all a(n)>0
Crossrefs
Programs
-
Mathematica
Function[s, {46}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[0, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
PARI
genit()={for(n=1,20,q=0;ibgn=1;for(m=ibgn,9E99,mark1=q;q=numdiv(m);if(mark1==0,summ=0;dun=0;mark2=m);if(q>=mark1,summ+=1,dun=1);if(dun>0&&summ==n,print(n," ",mark2);break);if(dun>0&&summ!=n,q=0;m-=1)));} \\ Bill McEachen, Apr 25 2017
-
PARI
A284597=vector(19);apply(scan(N,s=1,t=numdiv(s))=for(k=s+1,N,t>(t=numdiv(k))||next;k-s>#A284597||A284597[k-s]||printf(" a(%d)=%d,",k-s,s)||A284597[k-s]=s;s=k);done,[10^6]) \\ Finds a(1..10) in ~ 1 sec, but would take 100 times longer to get one more term with scan(10^8). You may extend the search using scan(END,START). - M. F. Hasler, May 06 2017
-
Python
from sympy import divisor_count def A284597(n): count, starti, s, i = 0,1,0,1 while True: d = divisor_count(i) if d < s: if count == n: return starti starti = i count = 0 s = d i += 1 count += 1 # Chai Wah Wu, May 04 2017
Extensions
a(1), a(2), a(4) corrected by Bill McEachen and Giovanni Resta, Apr 26 2017
a(17)-a(18) from Robert Gerbicz, May 14 2017
Comments