cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A324652 Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 36, 40, 48, 56, 80, 88, 96, 100, 104, 112, 160, 176, 192, 196, 200, 204, 208, 220, 224, 260, 264, 272, 304, 320, 336, 352, 368, 384, 392, 416, 448, 464, 496, 544, 550, 580, 608, 640, 648, 650, 672, 704, 736, 768, 784, 832, 896, 928, 992, 1032, 1040, 1044, 1056, 1060, 1068, 1088, 1104, 1120, 1184, 1216
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324658, fixed points of A324659.
Intersection with A324649 gives A324643.
Intersection with A324726 gives A000396.
In the range 1..2^32 there are only 22 odd terms. See A324647.

Crossrefs

Some subsequences: A000396, A324643, A324647 (the odd terms).

Programs

  • Mathematica
    Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", ")))

A324659 a(n) = (1/2)*A318468(n), where A318468(n) is bitwise-AND of 2*n and sigma(n).

Original entry on oeis.org

0, 0, 2, 0, 1, 6, 4, 0, 0, 8, 2, 12, 5, 12, 12, 0, 1, 18, 2, 20, 16, 18, 4, 24, 9, 16, 16, 28, 13, 4, 16, 0, 0, 2, 0, 36, 1, 6, 4, 40, 1, 32, 2, 40, 37, 36, 8, 48, 16, 34, 32, 48, 17, 52, 36, 56, 40, 40, 26, 20, 29, 48, 52, 0, 0, 64, 2, 4, 0, 64, 4, 64, 1, 8, 10, 68, 0, 68, 8, 80, 16, 18, 2, 80, 20, 66, 20, 88, 9, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A324652 (fixed points).

Programs

  • Mathematica
    Array[BitAnd[2*#, DivisorSigma[1, #]]/2 &, 100] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    A324659(n) = (bitand(2*n,sigma(n))/2);

Formula

a(n) = A318468(n)/2.
a(n) = n - A324658(n).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A318458 a(n) = n AND A001065(n), where AND is bitwise-and (A004198) & A001065 = sum of proper divisors.

Original entry on oeis.org

0, 0, 1, 0, 1, 6, 1, 0, 0, 8, 1, 0, 1, 10, 9, 0, 1, 16, 1, 20, 1, 6, 1, 0, 0, 16, 9, 28, 1, 10, 1, 0, 1, 0, 1, 36, 1, 6, 1, 32, 1, 34, 1, 40, 33, 10, 1, 0, 0, 34, 17, 36, 1, 2, 17, 0, 17, 32, 1, 44, 1, 34, 41, 0, 1, 66, 1, 0, 1, 66, 1, 72, 1, 8, 1, 64, 1, 74, 1, 64, 0, 0, 1, 4, 21, 6, 1, 88, 1, 16, 17, 76, 1, 18, 25, 0, 1, 64, 33, 100, 1, 98, 1, 104, 65
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Comments

The peculiar look of the scatterplot is partly an artifact of the logarithmic scale. Compare also to the scatterplot of A318468.

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n)-BitwiseOr(n, SumOfDivisors(n)-n): n in [1..100]]; // Vincenzo Librandi, Aug 29 2018
  • Mathematica
    Table[BitAnd[n, DivisorSigma[1, n] - n], {n, 100}] (* Vincenzo Librandi, Aug 29 2018 *)
  • PARI
    A318458(n) = bitand(n,sigma(n)-n);
    

Formula

a(n) = A004198(n, A001065(n)).
a(n) = A000203(n) - A318456(n) = (A000203(n)-A318457(n))/2.

A324647 Odd numbers k such that 2*k is equal to bitwise-AND of 2*k and sigma(k).

Original entry on oeis.org

1116225, 1245825, 1380825, 2127825, 10046025, 16813125, 203753025, 252880425, 408553425, 415433025, 740361825, 969523425, 1369580625, 1612924425, 1763305425, 2018027025, 2048985225, 2286684225, 3341556225, 3915517725, 3985769025, 4051698525, 7085469825, 7520472225
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

If this sequence has no terms common with A324649 (A324897, A324898), or no terms common with A324727, then there are no odd perfect numbers.
First 22 terms factored:
1116225 = 3^2 * 5^2 * 11^2 * 41
1245825 = 3^2 * 5^2 * 7^2 * 113
1380825 = 3^2 * 5^2 * 19^2 * 17 [Here the unitary prime is not the largest]
2127825 = 3^2 * 5^2 * 7^2 * 193
10046025 = 3^4 * 5^2 * 11^2 * 41
16813125 = 3^2 * 5^4 * 7^2 * 61
203753025 = 3^2 * 5^2 * 7^2 * 18481
252880425 = 3^2 * 5^2 * 7^2 * 22937
408553425 = 3^2 * 5^2 * 7^2 * 37057
415433025 = 3^2 * 5^2 * 7^4 * 769
740361825 = 3^2 * 5^2 * 7^2 * 67153
969523425 = 3^4 * 5^2 * 13^2 * 2833
1369580625 = 3^2 * 5^4 * 7^2 * 4969
1612924425 = 3^2 * 5^2 * 7^2 * 146297
1763305425 = 3^2 * 5^2 * 7^2 * 159937
2018027025 = 3^2 * 5^2 * 7^2 * 183041
2048985225 = 3^2 * 5^2 * 7^2 * 185849
2286684225 = 3^2 * 5^2 * 7^2 * 207409
3341556225 = 3^2 * 5^2 * 7^2 * 303089
3915517725 = 3^4 * 5^2 * 7^2 * 39461
3985769025 = 3^4 * 5^2 * 7^2 * 40169
4051698525 = 3^2 * 5^2 * 7^2 * 367501.
Compare the above factorizations to the various constraints listed for odd perfect numbers in the Wikipedia article. However, this is NOT a subsequence of A191218 (A228058), see below.
The first terms that do not belong to A191218 are 399736269009 = (3 * 7^2 * 11 * 17 * 23)^2 and 1013616036225 = (3^2 * 5 * 13 * 1721)^2, that both occur instead in A325311. The first terms with omega(n) <> 4 are 9315603297, 60452246925, 68923392525, and 112206463425. They factor as 3^2 * 7^2 * 11^2 * 13^2 * 1033, 3^2 * 5^2 * 7^2 * 17^2 * 18973, 3^2 * 5^2 * 13^2 * 19^2 * 5021, 3^2 * 5^2 * 7^2 * 199^2 * 257. - Giovanni Resta, Apr 21 2019
From Antti Karttunen, Jan 13 2025: (Start)
Because of the "monotonic property" of bitwise-and, this is a subsequence of nondeficient numbers (A023196).
Both odd perfect numbers, and quasiperfect numbers, if such numbers exist at all, would satisfy the condition for being included in this sequence. Furthermore, any term must be either an odd square with an odd abundancy (in A156942), which subset is given in A379490 (where quasiperfect numbers must thus reside, if they exist), or be included in A228058, i.e., satisfy the Euler's criteria for odd perfect numbers.
(End)

Crossrefs

Programs

  • PARI
    for(n=1,oo,if((n%2)&&((2*n)==bitand(2*n,sigma(n))),print1(n,", ")));

Formula

{Odd k such that 2k = A318468(k)}.

Extensions

a(23)-a(24) from Giovanni Resta, Apr 21 2019

A318466 a(n) = 2*n OR A000203(n), where OR is bitwise-or (A003986) and A000203 = sum of divisors.

Original entry on oeis.org

3, 7, 6, 15, 14, 12, 14, 31, 31, 22, 30, 28, 30, 28, 30, 63, 50, 39, 54, 42, 42, 44, 62, 60, 63, 62, 62, 56, 62, 124, 62, 127, 114, 118, 118, 91, 110, 124, 126, 90, 122, 116, 126, 92, 94, 92, 126, 124, 123, 125, 110, 106, 126, 124, 110, 120, 114, 126, 126, 248, 126, 124, 126, 255, 214, 148, 198, 254, 234, 156, 206
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitOr[2 #, DivisorSigma[1, #]] &, 71] (* Michael De Vlieger, Mar 30 2019 *)
  • PARI
    A318466(n) = bitor(2*n,sigma(n));
    
  • Python
    from sympy import divisor_sigma
    def A318466(n): return (n<<1)|int(divisor_sigma(n)) # Chai Wah Wu, Jul 10 2022

Formula

a(n) = A003986(2*n, A000203(n)).
a(n) = A224880(n) - A318468(n).

A318467 a(n) = 2*n XOR A000203(n), where XOR is bitwise-xor (A003987) and A000203 = sum of divisors.

Original entry on oeis.org

3, 7, 2, 15, 12, 0, 6, 31, 31, 6, 26, 4, 20, 4, 6, 63, 48, 3, 50, 2, 10, 8, 54, 12, 45, 30, 30, 0, 36, 116, 30, 127, 114, 114, 118, 19, 108, 112, 118, 10, 120, 52, 122, 12, 20, 20, 110, 28, 91, 57, 46, 10, 92, 20, 38, 8, 34, 46, 74, 208, 68, 28, 22, 255, 214, 20, 194, 246, 234, 28, 198, 83, 216, 230, 234, 20, 250, 52, 206, 26
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Cf. A000396 (positions of zeros), A378227 (XOR-Moebius transform), A379234 (fixed points), A379236.
Cf. also A294899, A318457, A378988.

Programs

  • Mathematica
    Table[BitXor[2n,DivisorSigma[1,n]],{n,80}] (* Harvey P. Dale, Oct 30 2022 *)
  • PARI
    A318467(n) = bitxor(2*n,sigma(n));

Formula

a(n) = A003987(2*n, A000203(n)).
a(n) = A224880(n) - 2*A318468(n).
a(n) = 2*n XOR (A318457(n)+2*A318458(n)). - Antti Karttunen, Jan 08 2025

A324718 Odd numbers n for which bitand(2n,sigma(n)) = 2*bitand(n,sigma(n)-n), where bitand is bitwise-AND, A004198.

Original entry on oeis.org

1, 5, 9, 17, 37, 41, 73, 137, 149, 153, 257, 261, 277, 293, 337, 405, 521, 529, 549, 577, 593, 641, 661, 673, 677, 1025, 1033, 1061, 1093, 1097, 1109, 1153, 1193, 1289, 1297, 1301, 1321, 1361, 2053, 2069, 2081, 2089, 2097, 2113, 2129, 2209, 2213, 2225, 2309, 2341, 2377, 2389, 2593, 2633, 2689, 2693, 2729, 2825, 4129, 4133, 4177, 4229
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Odd numbers n for which 2*A318458(n) = A318468(n). If there are no common terms with A324719, then there are no odd perfect numbers.
This is not a subsequence of A191218, because terms 1, 9, 529, 2209, 10609, 77841, 83521, 263169, 279841, 330625, 528529, ... are not present in A191218.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^4, 2], Block[{s = DivisorSigma[1, #]}, BitAnd[2*#, s] == 2* BitAnd[#, s-#]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n%2) && (bitand(2*n,sigma(n)) == 2*bitand(n,sigma(n)-n)),print1(n, ", ")));

A324815 a(n) = 2*A156552(n) AND A323243(n), where AND is bitwise-and, A004198.

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, 8, 12, 0, 0, 4, 0, 2, 16, 24, 0, 10, 0, 4, 36, 0, 0, 8, 24, 0, 24, 0, 0, 32, 0, 32, 4, 0, 40, 32, 0, 2, 128, 8, 0, 2, 0, 4, 36, 0, 0, 16, 48, 18, 4, 4, 0, 26, 72, 8, 512, 2, 0, 4, 0, 0, 12, 104, 8, 0, 0, 0, 4, 2, 0, 72, 0, 0, 32, 0, 80, 0, 0, 16, 8, 0, 0, 20, 256, 0, 2048, 0, 0, 74, 128, 0, 0, 0, 520, 56, 0, 32, 128, 64, 0, 2, 0, 8, 64
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A156552(n) AND A323243(n), where AND is A004198.
a(n) = 2*A156552(n) - A324716(n) = 2*A156552(n) XOR A324716(n), where XOR is A003987.
For n > 1, a(n) = A318468(A156552(n)).
a(p) = 0 for all primes p.
a(A324201(n)) = A139256(n).
A000120(a(n)) = A324816(n).

A324658 a(n) = n - A324659(n), where A324659(n) is half of bitwise-AND of 2*n and sigma(n).

Original entry on oeis.org

1, 2, 1, 4, 4, 0, 3, 8, 9, 2, 9, 0, 8, 2, 3, 16, 16, 0, 17, 0, 5, 4, 19, 0, 16, 10, 11, 0, 16, 26, 15, 32, 33, 32, 35, 0, 36, 32, 35, 0, 40, 10, 41, 4, 8, 10, 39, 0, 33, 16, 19, 4, 36, 2, 19, 0, 17, 18, 33, 40, 32, 14, 11, 64, 65, 2, 65, 64, 69, 6, 67, 8, 72, 66, 65, 8, 77, 10, 71, 0, 65, 64, 81, 4, 65, 20, 67, 0, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A324652 (positions of zeros).

Programs

  • Mathematica
    Array[# - BitAnd[2*#, DivisorSigma[1, #]]/2 &, 100] (* Paolo Xausa, Mar 13 2024 *)
  • PARI
    A324658(n) = (n-(bitand(2*n,sigma(n))/2));

Formula

a(n) = n - A324659(n) = n - A318468(n)/2 = n - ((2*n AND sigma(n))/2).
Showing 1-10 of 13 results. Next