A006252
Expansion of e.g.f. 1/(1 - log(1+x)).
Original entry on oeis.org
1, 1, 1, 2, 4, 14, 38, 216, 600, 6240, 9552, 319296, -519312, 28108560, -176474352, 3998454144, -43985078784, 837126163584, -12437000028288, 237195036797184, -4235955315745536, 85886259443020800, -1746536474655406080, 38320721602434017280, -864056965711935974400
Offset: 0
- G. Pólya, Induction and Analogy in Mathematics. Princeton Univ. Press, 1954, p. 9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Beáta Bényi and Daniel Yaqubi, Mixed coloured permutations, arXiv:1903.07450 [math.CO], 2019.
- Takao Komatsu and Amalia Pizarro-Madariaga, Harmonic numbers associated with inversion numbers in terms of determinants, Turkish Journal of Mathematics (2019) Vol. 43, 340-354.
- E. J. Weniger, Summation of divergent power series by means of factorial series arXiv:1005.0466v1 [math.NA], 2010.
-
a006252 0 = 1
a006252 n = sum $ a048594_row n -- Reinhard Zumkeller, Mar 02 2014
-
With[{nn=30},CoefficientList[Series[1/(1-Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(1/(1-log(1+x+x*O(x^n))),n))
-
{a(n)=local(CF=1+x*O(x^n)); for(k=0, n-1, CF=1/((n-k+1)-(n-k)*x+(n-k+1)^2*x*CF)); n!*polcoeff(1+x/(1-x+x*CF), n, x)} /* Paul D. Hanna, Dec 31 2011 */
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
-
def A006252_list(len):
f, R, C = 1, [1], [1]+[0]*len
for n in (1..len):
f *= n
for k in range(n, 0, -1):
C[k] = -C[k-1]*((k-1)/(k) if k>1 else 1)
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0]*f)
return R
print(A006252_list(24)) # Peter Luschny, Feb 21 2016
A088501
Expansion of e.g.f. 1/(1-2*log(1+x)).
Original entry on oeis.org
1, 2, 6, 28, 172, 1328, 12272, 132480, 1633344, 22663104, 349324608, 5923548288, 109570736256, 2195765044224, 47386235513856, 1095689316882432, 27023900076988416, 708173307424456704, 19649589144733089792
Offset: 0
-
CoefficientList[Series[1/(1-2*Log[1+x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 03 2015 *)
-
a(n) = sum(k=0, n, k!*2^k*stirling(n, k, 1)); \\ Seiichi Manyama, Feb 03 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*log(1+x)))) \\ Seiichi Manyama, Feb 03 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
A335531
Expansion of e.g.f. 1/(1-3*log(1+x)).
Original entry on oeis.org
1, 3, 15, 114, 1152, 14562, 220842, 3907656, 79019496, 1797660000, 45439902288, 1263456328032, 38324061498672, 1259345712721392, 44565940575178992, 1689757622095909248, 68339921117338411776, 2936658673480397537664, 133615257668682429428352, 6417113656859478628233984, 324414161427519766056847104
Offset: 0
-
a[n_] := Sum[k! * 3^k * StirlingS1[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Jun 12 2020 *)
With[{nn=20},CoefficientList[Series[1/(1-3Log[1+x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 02 2021 *)
-
a(n) = sum(k=0, n, 3^k*k!*stirling(n, k, 1));
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-3*log(1+x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
A317172
a(n) = n! * [x^n] 1/(1 - n*log(1 + x)).
Original entry on oeis.org
1, 1, 6, 114, 4168, 248870, 21966768, 2685571560, 434202400896, 89679267601632, 23032451508686400, 7199033431349412576, 2690461258552995849216, 1184680716090974803461072, 606986901206377433194091520, 358023049940533240478842992000, 240858598980174362552808566194176
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 - n Log[1 + x]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[StirlingS1[n, k] n^k k!, {k, n}], {n, 16}]]
-
{a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 1))} \\ Seiichi Manyama, Jun 12 2020
A320079
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 14, 76, 222, 488, 910, ...
0, 88, 772, 3132, 8824, 20080, ...
0, 694, 9808, 55242, 199456, 553870, ...
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A354147
Expansion of e.g.f. 1/(1 - 4 * log(1+x)).
Original entry on oeis.org
1, 4, 28, 296, 4168, 73376, 1550048, 38202048, 1076017344, 34096092672, 1200459182592, 46492497859584, 1964295942558720, 89906908894150656, 4431634108980264960, 234044235939806232576, 13184410813249253031936, 789137065405617987354624
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-4*log(1+x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
-
a(n) = sum(k=0, n, 4^k*k!*stirling(n, k, 1));
A365604
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).
Original entry on oeis.org
1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0
-
a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
-
a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));
A334369
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. (1 - (k-1)*log(1 + x))/(1 - k*log(1 + x)).
Original entry on oeis.org
1, 1, 1, 1, 1, -1, 1, 1, 1, 2, 1, 1, 3, 2, -6, 1, 1, 5, 14, 4, 24, 1, 1, 7, 38, 86, 14, -120, 1, 1, 9, 74, 384, 664, 38, 720, 1, 1, 11, 122, 1042, 4854, 6136, 216, -5040, 1, 1, 13, 182, 2204, 18344, 73614, 66240, 600, 40320, 1, 1, 15, 254, 4014, 49774, 387512, 1302552, 816672, 6240, -362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
2, 2, 14, 38, 74, 122, ...
-6, 4, 86, 384, 1042, 2204, ...
24, 14, 664, 4854, 18344, 49774, ...
-
T[0, k_] = 1; T[n_, k_] := Sum[If[k == 0 && j <= 1, 1, k^(j - 1)] * j! * StirlingS1[n, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
Showing 1-8 of 8 results.
Comments