A320911
Numbers with an even number of prime factors (counted with multiplicity) that can be factored into squarefree semiprimes.
Original entry on oeis.org
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159
Offset: 1
360 is in the sequence because it can be factored into squarefree semiprimes as (6*6*10).
4620 is in the sequence, and can be factored into squarefree semiprimes in 6 ways: (6*10*77), (6*14*55), (6*22*35), (10*14*33), (10*21*22), (14*15*22).
Cf.
A001055,
A001222,
A001358,
A005117,
A006881,
A007717,
A028260,
A320655,
A320656,
A320891,
A320892,
A320893,
A320894,
A320912.
-
sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],sqfsemfacs[#]!={}]&]
A338899
Concatenated sequence of prime indices of squarefree semiprimes (A006881).
Original entry on oeis.org
1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 1, 18, 2, 13, 2, 14, 4, 8, 1, 19, 2, 15
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 57: {2,8} 106: {1,16} 155: {3,11}
10: {1,3} 58: {1,10} 111: {2,12} 158: {1,22}
14: {1,4} 62: {1,11} 115: {3,9} 159: {2,16}
15: {2,3} 65: {3,6} 118: {1,17} 161: {4,9}
21: {2,4} 69: {2,9} 119: {4,7} 166: {1,23}
22: {1,5} 74: {1,12} 122: {1,18} 177: {2,17}
26: {1,6} 77: {4,5} 123: {2,13} 178: {1,24}
33: {2,5} 82: {1,13} 129: {2,14} 183: {2,18}
34: {1,7} 85: {3,7} 133: {4,8} 185: {3,12}
35: {3,4} 86: {1,14} 134: {1,19} 187: {5,7}
38: {1,8} 87: {2,10} 141: {2,15} 194: {1,25}
39: {2,6} 91: {4,6} 142: {1,20} 201: {2,19}
46: {1,9} 93: {2,11} 143: {5,6} 202: {1,26}
51: {2,7} 94: {1,15} 145: {3,10} 203: {4,10}
55: {3,5} 95: {3,8} 146: {1,21} 205: {3,13}
A320656 counts multiset partitions using these rows, or factorizations into squarefree semiprimes.
A338901 gives the row numbers for first appearances.
A004526 counts 2-part partitions, with strict case shifted right once.
A006881 lists squarefree semiprimes.
A046388 lists odd squarefree semiprimes.
A166237 gives first differences of squarefree semiprimes.
Cf.
A030229,
A056239,
A065516,
A112798,
A115392,
A167171,
A176506,
A320893,
A338904,
A338906,
A338907,
A338910,
A338911.
A320892
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.
Original entry on oeis.org
16, 64, 81, 96, 144, 160, 224, 256, 324, 352, 384, 400, 416, 486, 544, 576, 608, 625, 640, 729, 736, 784, 864, 896, 928, 960, 992, 1024, 1184, 1215, 1296, 1312, 1344, 1376, 1408, 1440, 1504, 1536, 1600, 1664, 1696, 1701, 1888, 1936, 1944, 1952, 2016, 2025
Offset: 1
A complete list of all factorizations of 1296 into semiprimes is:
1296 = (4*4*9*9)
1296 = (4*6*6*9)
1296 = (6*6*6*6)
None of these is strict, so 1296 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A025487,
A028260,
A045778,
A318871,
A318953,
A320462,
A320655,
A320656,
A320891,
A320893,
A320894,
A322353.
-
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
-
A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s));
isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ Antti Karttunen, Dec 06 2018
A320912
Numbers with an even number of prime factors (counted with multiplicity) that can be factored into distinct semiprimes.
Original entry on oeis.org
1, 4, 6, 9, 10, 14, 15, 21, 22, 24, 25, 26, 33, 34, 35, 36, 38, 39, 40, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 100, 104, 106, 111, 115, 118, 119, 121, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140
Offset: 1
9000 is in the sequence and can be factored in either of two ways: (4*6*15*25) or (4*9*10*25).
-
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],strsemfacs[#]!={}]&]
A320891
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into squarefree semiprimes.
Original entry on oeis.org
4, 9, 16, 24, 25, 40, 49, 54, 56, 64, 81, 88, 96, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 224, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 361, 375, 376, 384, 400, 416, 424, 459, 472, 486, 488, 513, 528, 529, 536, 544, 560
Offset: 1
A complete list of all factorizations of 24 is:
(2*2*2*3),
(2*2*6), (2*3*4),
(2*12), (3*8), (4*6),
(24).
All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320892,
A320893,
A320894.
-
semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],semfacs[#]=={}]&]
A320894
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct squarefree semiprimes.
Original entry on oeis.org
4, 9, 16, 24, 25, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459, 472, 484
Offset: 1
A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24). All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320891,
A320892,
A320893.
-
strsqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsqfsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],strsqfsemfacs[#]=={}]&]
A339560
Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0
The a(3) = 1 through a(11) = 13 partitions (A = 10):
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(3211) (3221) (81) (91) (92)
(4211) (3321) (4321) (A1)
(4221) (5221) (4322)
(4311) (5311) (4331)
(5211) (6211) (4421)
(5321)
(5411)
(6221)
(6311)
(7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
{{1,2},{1,3},{3,4}}
{{1,3},{1,4},{2,3}},
so y is counted under a(14).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]
A339561
Products of distinct squarefree semiprimes.
Original entry on oeis.org
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 55: {3,5} 91: {4,6}
6: {1,2} 57: {2,8} 93: {2,11}
10: {1,3} 58: {1,10} 94: {1,15}
14: {1,4} 60: {1,1,2,3} 95: {3,8}
15: {2,3} 62: {1,11} 106: {1,16}
21: {2,4} 65: {3,6} 111: {2,12}
22: {1,5} 69: {2,9} 115: {3,9}
26: {1,6} 74: {1,12} 118: {1,17}
33: {2,5} 77: {4,5} 119: {4,7}
34: {1,7} 82: {1,13} 122: {1,18}
35: {3,4} 84: {1,1,2,4} 123: {2,13}
38: {1,8} 85: {3,7} 126: {1,2,2,4}
39: {2,6} 86: {1,14} 129: {2,14}
46: {1,9} 87: {2,10} 132: {1,1,2,5}
51: {2,7} 90: {1,2,2,3} 133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
(6*10*15*77)
(6*10*21*55)
(6*10*33*35)
(6*14*15*55)
(6*15*22*35)
(10*14*15*33)
(10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
A309356 is a kind of universal embedding.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
-
A339560 can be partitioned into distinct strict pairs (
A339561 [this sequence]).
Cf.
A001055,
A001221,
A002100,
A007717,
A030229,
A112798,
A320655,
A320893,
A338899,
A338903,
A339563,
A339659.
-
sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
Select[Range[100],sqs[#]!={}&]
A339741
Products of distinct primes or squarefree semiprimes.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 20: {1,1,3} 39: {2,6}
2: {1} 21: {2,4} 41: {13}
3: {2} 22: {1,5} 42: {1,2,4}
5: {3} 23: {9} 43: {14}
6: {1,2} 26: {1,6} 44: {1,1,5}
7: {4} 28: {1,1,4} 45: {2,2,3}
10: {1,3} 29: {10} 46: {1,9}
11: {5} 30: {1,2,3} 47: {15}
12: {1,1,2} 31: {11} 50: {1,3,3}
13: {6} 33: {2,5} 51: {2,7}
14: {1,4} 34: {1,7} 52: {1,1,6}
15: {2,3} 35: {3,4} 53: {16}
17: {7} 36: {1,1,2,2} 55: {3,5}
18: {1,2,2} 37: {12} 57: {2,8}
19: {8} 38: {1,8} 58: {1,10}
For example, we have 36 = (2*3*6), so 36 is in the sequence. On the other hand, a complete list of all strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72). Since none of these consists of only primes or squarefree semiprimes, 72 is not in the sequence. A complete list of all factorizations of 1080 into primes or squarefree semiprimes is:
(2*2*2*3*3*3*5)
(2*2*2*3*3*15)
(2*2*3*3*3*10)
(2*2*3*3*5*6)
(2*2*3*6*15)
(2*3*3*6*10)
(2*3*5*6*6)
(2*6*6*15)
(3*6*6*10)
(5*6*6*6)
Since none of these is strict, 1080 is not in the sequence.
See link for additional cross-references.
Allowing only primes gives
A013929.
Positions of positive terms in
A339742.
Allowing squares of primes gives the complement of
A339840.
Unlabeled multiset partitions of this type are counted by
A339888.
A002100 counts partitions into squarefree semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
Cf.
A001221,
A005117,
A028260,
A030229,
A050320,
A112798,
A309356,
A320663,
A320893,
A320924,
A338899.
-
sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
Select[Range[100],sqps[#]!={}&]
A338915
Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of not necessarily distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 1, 1, 4, 2, 6, 6, 12, 12, 20, 22, 38, 42, 60, 73, 101, 124, 164, 203, 266, 319, 415, 507, 649, 786, 983, 1198, 1499, 1797, 2234, 2673, 3303, 3952, 4826, 5753, 6999, 8330, 10051, 11943, 14357, 16956, 20322, 23997, 28568, 33657, 39897, 46879
Offset: 0
The a(7) = 1 through a(12) = 12 partitions:
211111 2222 411111 222211 222221 3333
221111 21111111 331111 611111 222222
311111 511111 22211111 441111
11111111 22111111 32111111 711111
31111111 41111111 22221111
1111111111 2111111111 32211111
33111111
42111111
51111111
2211111111
3111111111
111111111111
For example, the partition y = (3,2,2,1,1,1,1,1) can be partitioned into pairs in just three ways:
{{1,1},{1,1},{1,2},{2,3}}
{{1,1},{1,1},{1,3},{2,2}}
{{1,1},{1,2},{1,2},{1,3}}
None of these is strict, so y is counted under a(12).
The Heinz numbers of these partitions are
A320892.
The complement in even-length partitions is
A338916.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
smcs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[smcs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&smcs[Times@@Prime/@#]=={}&]],{n,0,10}]
Showing 1-10 of 24 results.
Comments