cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A039685 Numbers m such that m^2 ends in 444.

Original entry on oeis.org

38, 462, 538, 962, 1038, 1462, 1538, 1962, 2038, 2462, 2538, 2962, 3038, 3462, 3538, 3962, 4038, 4462, 4538, 4962, 5038, 5462, 5538, 5962, 6038, 6462, 6538, 6962, 7038, 7462, 7538, 7962, 8038, 8462, 8538, 8962, 9038, 9462, 9538, 9962, 10038, 10462
Offset: 1

Views

Author

Keywords

Comments

No square can end in more than three 4's.
When a square ends in exactly three identical digits, these digits are necessarily 444. - Bernard Schott, Oct 31 2019

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover Publ., 2nd Ed. 1966, Chapter XV, "On The Square", p. 139. ISBN 0-486-21096-0.
  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 1 pp. 55 and 95-96 (1995)
  • David Wells, "Curious and Interesting Numbers", Revised Ed. Penguin Books, p. 152. ISBN 0-14-026149-4.

Crossrefs

Cf. A328886 (squares that end in 444).

Programs

  • Mathematica
    Drop[ Flatten[ Table[{500n-38, 500n+38}, {n, 0, 21}]], 1] (* Robert G. Wilson v, Nov 27 2004 *)
    Sqrt[#]&/@Select[Range[15000]^2,Mod[#,1000]==444&] (* or *) LinearRecurrence[{1,1,-1},{38,462,538},50] (* Harvey P. Dale, Dec 26 2023 *)

Formula

a(2n+1) = 500n + 38 and a(2n+2) = 500n - 38.
From Bruno Berselli, Oct 27 2010: (Start)
a(n) = 250*n + 87*(-1)^n - 125.
G.f.: 2*x*(19 + 212*x + 19*x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3. (End)
E.g.f.: 38 + (250*x - 38)*cosh(x) + (250*x - 212)*sinh(x). - Stefano Spezia, Sep 15 2024

Extensions

More terms from Patrick De Geest, Jun 15 1999

A348488 Positive numbers whose square starts and ends with exactly one 4.

Original entry on oeis.org

2, 22, 68, 202, 208, 218, 222, 642, 648, 652, 658, 672, 678, 682, 692, 698, 702, 2002, 2008, 2018, 2022, 2028, 2032, 2042, 2048, 2052, 2058, 2068, 2072, 2078, 2082, 2092, 2122, 2128, 2132, 2142, 2148, 2152, 2158, 2168, 2172, 2178, 2182, 2192, 2198, 2202, 2208, 2218, 2222, 2228
Offset: 1

Views

Author

Bernard Schott, Oct 24 2021

Keywords

Comments

When a square ends with 4 (A273375), this square may end with precisely one 4, two 4's or three 4's (A328886).
This sequence is infinite as each 2*(10^m + 1), m >= 1 or 2*(10^m + 4), m >= 2 is a term.
Numbers 2, 22, 222, ..., 2*(10^k - 1) / 9, (k >= 1), as well as numbers 2228, 22228, ..., 2*(10^k + 52) / 9, (k >= 4) are terms and have no digits 0. - Marius A. Burtea, Oct 24 2021

Examples

			22 is a term since 22^2 = 484.
638 is not a term since 638^2 = 407044.
668 is not a term since 668^2 = 446224.
		

Crossrefs

Cf. A045858, A273375 (squares ending with 4), A017317, A328886 (squares ending with three 4).
Cf. A002276 \ {0} (a subsequence).
Subsequence of A305719.
Similar to: A348487 (k=1), this sequence (k=4), A348489 (k=5), A348490 (k=6).

Programs

  • Magma
    [2] cat [n:n in [4..2300]|Intseq(n*n)[1] eq 4 and Intseq(n*n)[#Intseq(n*n)] eq 4 and Intseq(n*n)[-1+#Intseq(n*n)] ne 4 and Intseq(n*n)[2] ne 4]; // Marius A. Burtea, Oct 24 2021
    
  • Mathematica
    Join[{2}, Select[Range[10, 2000], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 4 && d[[-2]] != 4 && d[[2]] != 4 &]] (* Amiram Eldar, Oct 24 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==4) && (d[#d]==4) && if (#d>2, (d[2]!=4) && (d[#d-1]!=4), 1); \\ Michel Marcus, Oct 24 2021
    
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [2, 8]))
      return [k for k in r if ok(k)]
    print(aupto(2228)) # Michael S. Branicky, Oct 24 2021

A348832 Positive numbers whose square starts and ends with exactly 444.

Original entry on oeis.org

666462, 666538, 666962, 667038, 2107462, 2107538, 2107962, 2108038, 2108462, 2108538, 2108962, 2109038, 2109462, 6663462, 6663538, 6663962, 6664038, 6664462, 6664538, 6664962, 6665038, 6665462, 6665538, 6665962, 6666038, 6667462, 6667538, 6667962, 6668038, 6668462, 6668538, 6668962
Offset: 1

Views

Author

Bernard Schott, Nov 09 2021

Keywords

Comments

The 1st problem of British Mathematical Olympiad (BMO) in 1995 (see link) asked to find all positive integers whose squares end in three 4’s (A039685); this sequence is the subsequence of these integers whose squares also start in precisely three 4's (no four or more 4's). Two such infinite subsequences are proposed below.
When a square starts and ends with digits ddd, then ddd is necessarily 444.
The first 3 digits of terms are either 210, 666 or 667, while the last 3 digits are either 038, 462, 538 or 962 (see examples).
From Marius A. Burtea, Nov 09 2021 : (Start)
The sequence is infinite because the numbers 667038, 6670038, 66700038, 667000038, ..., 667*10^k + 38, k >= 3, are terms because are square 444939693444, 44489406921444, 4448895069201444, 444889050692001444, 44488900506920001444, ...
Also, 6663462, 66633462, 666333462, 6663333462, ..., (1999*10^k + 386) / 3, k >= 4, are terms and have no digits 0, because their squares are 44401725825444, 4440018258105444, 444000282580905444, 44400012825808905444,
4440001128258088905444, ... (End)

Examples

			666462 is a term since 666462^2 = 444171597444.
21038 is not a term since 21038^2 = 442597444.
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 1 pp. 55 and 95-96 (1995)

Crossrefs

Subsequence of A039685, A045858, A273375, A305719, A346892.
Similar to: A348488 (d=4), A348831 (dd=44), this sequence (ddd=444).

Programs

  • Magma
    fd:=func; fs:=func; [n:n in [1..6700000]|fd(n) and fs(n)]; // Marius A. Burtea, Nov 09 2021
  • Mathematica
    Select[Range[100, 7*10^6], (d = IntegerDigits[#^2])[[1 ;; 3]] == d[[-3 ;; -1]] == {4, 4, 4} && d[[-4]] != 4 && d[[4]] != 4 &] (* Amiram Eldar, Nov 09 2021 *)
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-3
    def aupto(N):
      ends = [38, 462, 538, 962]
      r = takewhile(lambda x: x<=N, (1000*i+d for i in count(0) for d in ends))
      return [k for k in r if ok(k)]
    print(aupto(6668962)) # Michael S. Branicky, Nov 09 2021
    
Showing 1-3 of 3 results.