A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 20: (3,1,1) 47: (15) 2: (1) 23: (9) 48: (2,1,1,1,1) 3: (2) 24: (2,1,1,1) 49: (4,4) 4: (1,1) 25: (3,3) 50: (3,3,1) 5: (3) 27: (2,2,2) 52: (6,1,1) 7: (4) 28: (4,1,1) 53: (16) 8: (1,1,1) 29: (10) 54: (2,2,2,1) 9: (2,2) 31: (11) 56: (4,1,1,1) 11: (5) 32: (1,1,1,1,1) 59: (17) 12: (2,1,1) 37: (12) 61: (18) 13: (6) 40: (3,1,1,1) 63: (4,2,2) 16: (1,1,1,1) 41: (13) 64: (1,1,1,1,1,1) 17: (7) 43: (14) 67: (19) 18: (2,2,1) 44: (5,1,1) 68: (7,1,1) 19: (8) 45: (3,2,2) 71: (20) For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
Crossrefs
Programs
-
Mathematica
Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]
Extensions
Name edited by Gus Wiseman, Aug 13 2025
Comments