cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A329739 Number of compositions of n whose run-lengths are all different.

Original entry on oeis.org

1, 1, 2, 2, 5, 8, 10, 20, 28, 41, 62, 102, 124, 208, 278, 426, 571, 872, 1158, 1718, 2306, 3304, 4402, 6286, 8446, 11725, 15644, 21642, 28636, 38956, 52296, 70106, 93224, 124758, 165266, 218916, 290583, 381706, 503174, 659160, 865020, 1124458, 1473912, 1907298
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(7) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (211)   (221)    (222)     (223)
                    (1111)  (311)    (411)     (322)
                            (1112)   (1113)    (331)
                            (2111)   (3111)    (511)
                            (11111)  (11112)   (1114)
                                     (21111)   (1222)
                                     (111111)  (2221)
                                               (4111)
                                               (11113)
                                               (11122)
                                               (22111)
                                               (31111)
                                               (111112)
                                               (111211)
                                               (112111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The normal case is A329740.
The case of partitions is A098859.
Strict compositions are A032020.
Compositions with relatively prime run-lengths are A000740.
Compositions with distinct multiplicities are A242882.
Compositions with distinct differences are A325545.
Compositions with equal run-lengths are A329738.
Compositions with normal run-lengths are A329766.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]

Extensions

a(21)-a(26) from Giovanni Resta, Nov 22 2019
a(27)-a(43) from Alois P. Heinz, Jul 06 2020

A329738 Number of compositions of n whose run-lengths are all equal.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 19, 24, 45, 75, 133, 215, 401, 662, 1177, 2035, 3587, 6190, 10933, 18979, 33339, 58157, 101958, 178046, 312088, 545478, 955321, 1670994, 2925717, 5118560, 8960946, 15680074, 27447350, 48033502, 84076143, 147142496, 257546243, 450748484, 788937192
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (131)    (51)
                            (212)    (123)
                            (11111)  (132)
                                     (141)
                                     (213)
                                     (222)
                                     (231)
                                     (312)
                                     (321)
                                     (1122)
                                     (1212)
                                     (2121)
                                     (2211)
                                     (111111)
		

Crossrefs

Compositions with relatively prime run-lengths are A000740.
Compositions with equal multiplicities are A098504.
Compositions with equal differences are A175342.
Compositions with distinct run-lengths are A329739.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ Andrew Howroyd, Dec 30 2020

Formula

a(n) = Sum_{d|n} A003242(d).
a(n) = A329745(n) + A000005(n).

A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 6, 6, 2, 1, 3, 15, 9, 4, 0, 1, 1, 22, 22, 16, 2, 0, 1, 3, 41, 38, 37, 8, 0, 0, 1, 2, 72, 69, 86, 26, 0, 0, 0, 1, 3, 129, 124, 175, 78, 2, 0, 0, 0, 1, 1, 213, 226, 367, 202, 14, 0, 0, 0, 0, 1, 5, 395, 376, 750, 469, 52, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
   1
   1   1
   1   1   2
   1   2   3   2
   1   1   6   6   2
   1   3  15   9   4   0
   1   1  22  22  16   2   0
   1   3  41  38  37   8   0   0
   1   2  72  69  86  26   0   0   0
   1   3 129 124 175  78   2   0   0   0
   1   1 213 226 367 202  14   0   0   0   0
   1   5 395 376 750 469  52   0   0   0   0   0
Row n = 6 counts the following compositions:
  (6)  (33)      (15)    (114)    (1131)
       (222)     (24)    (411)    (1311)
       (111111)  (42)    (1113)   (11121)
                 (51)    (1221)   (12111)
                 (123)   (2112)
                 (132)   (3111)
                 (141)   (11112)
                 (213)   (11211)
                 (231)   (21111)
                 (312)
                 (321)
                 (1122)
                 (1212)
                 (2121)
                 (2211)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A032741.
Column k = 2 is A329745.
Column k = n - 2 is A329743.
The version for partitions is A329746.
The version with rows reversed is A329750.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]

A351014 Number of distinct runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The number 3310 has binary expansion 110011101110 and standard composition (1,3,1,1,2,1,1,2), with runs (1), (3), (1,1), (2), (1,1), (2), of which 4 are distinct, so a(3310) = 4.
		

Crossrefs

Counting not necessarily distinct runs gives A124767.
Using binary expansions instead of standard compositions gives A297770.
Positions of first appearances are A351015.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Split[stc[n]]]],{n,0,100}]

A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 3, 4, 3, 0, 0, 1, 1, 4, 8, 1, 0, 0, 1, 3, 6, 10, 2, 0, 0, 0, 1, 2, 8, 13, 6, 0, 0, 0, 0, 1, 3, 11, 20, 7, 0, 0, 0, 0, 0, 1, 1, 11, 29, 14, 0, 0, 0, 0, 0, 0, 1, 5, 19, 31, 20, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
  1
  1  1
  1  1  1
  1  2  1  1
  1  1  2  3  0
  1  3  4  3  0  0
  1  1  4  8  1  0  0
  1  3  6 10  2  0  0  0
  1  2  8 13  6  0  0  0  0
  1  3 11 20  7  0  0  0  0  0
  1  1 11 29 14  0  0  0  0  0  0
  1  5 19 31 20  1  0  0  0  0  0  0
  1  1 17 50 30  2  0  0  0  0  0  0  0
  1  3 25 64 37  5  0  0  0  0  0  0  0  0
  1  3 29 74 62  7  0  0  0  0  0  0  0  0  0
Row n = 8 counts the following partitions:
  (8)  (44)        (53)    (332)      (4211)
       (2222)      (62)    (422)      (32111)
       (11111111)  (71)    (611)
                   (431)   (3221)
                   (521)   (5111)
                   (3311)  (22211)
                           (41111)
                           (221111)
                           (311111)
                           (2111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A032741.
Column k = 2 is A329745.
A similar invariant is frequency depth; see A323014, A325280.
The version for compositions is A329744.
The version for binary words is A329767.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
  • PARI
    \\ rr(p) gives runs resistance of partition.
    rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r}
    row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

A329747 Runs-resistance of the sequence of prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 1, 3, 0, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 3, 0, 2, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 2, 0, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 2, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 3, 0, 3, 3, 2, 0, 2, 0, 3, 2, 2, 0, 3, 0, 2, 2, 3, 0, 2, 2, 3, 3, 2, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

First differs from A304455 at a(90) = 3, A304455(90) = 4.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.
A prime index of n is a number m such that prime(m) divides n. The sequence of prime indices of n is row n of A112798.

Examples

			We have (1,2,2,3) -> (1,2,1) -> (1,1,1) -> (3), so a(90) = 3.
		

Crossrefs

The version for partitions is A329746.
The version for compositions is A329744.
The version for binary words is A329767.
The version for binary expansion is A318928.
Cf. A008578 (positions of 0's), A056239, A112798, A329745, A329750.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[runsres[primeMS[n]],{n,50}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    runlengths(lista) = if(!#lista, lista, if(1==#lista, List([1]), my(runs=List([]), rl=1); for(i=1, #lista, if((i< #lista) && (lista[i]==lista[i+1]), rl++, listput(runs,rl); rl=1)); (runs)));
    A329747(n) = { my(runs=pis_to_runs(n)); for(i=0,oo,if(#runs<=1, return(i), runs = runlengths(runs))); }; \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A351015 Smallest k such that the k-th composition in standard order has n distinct runs.

Original entry on oeis.org

0, 1, 5, 27, 155, 1655, 18039, 281975
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
It would be very interesting to have a formula or general construction for a(n). - Gus Wiseman, Feb 12 2022

Examples

			The terms together with their binary expansions and corresponding compositions begin:
       0:                    0  ()
       1:                    1  (1)
       5:                  101  (2,1)
      27:                11011  (1,2,1,1)
     155:             10011011  (3,1,2,1,1)
    1655:          11001110111  (1,3,1,1,2,1,1,1)
   18039:      100011001110111  (4,1,3,1,1,2,1,1,1)
  281975:  1000100110101110111  (4,3,1,2,2,1,1,2,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A006939.
Counting not necessarily distinct runs gives A113835 (up to zero).
Using binary expansions instead of standard compositions gives A350952.
These are the positions of first appearances in A351014.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    s=Table[Length[Union[Split[stc[n]]]],{n,0,1000}];
    Table[Position[s,k][[1,1]]-1,{k,Union[s]}]

A351016 Number of binary words of length n with all distinct runs.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 92, 154, 244, 382, 652, 994, 1572, 2414, 3884, 5810, 8996, 13406, 21148, 31194, 47508, 70086, 104844, 156738, 231044, 338998, 496300, 721042, 1064932, 1536550, 2232252, 3213338, 4628852, 6603758, 9554156, 13545314, 19354276
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

These are binary words where the runs of zeros have all distinct lengths and the runs of ones also have all distinct lengths. For n > 0 this is twice the number of terms of A175413 that have n digits in binary.

Examples

			The a(0) = 1 through a(4) = 12 binary words:
  ()   0    00    000    0000
       1    01    001    0001
            10    011    0010
            11    100    0011
                  110    0100
                  111    0111
                         1000
                         1011
                         1100
                         1101
                         1110
                         1111
For example, the word (1,1,0,1) has three runs (1,1), (0), (1), which are all distinct, so is counted under a(4).
		

Crossrefs

The version for compositions is A351013, lengths A329739, ranked by A351290.
The version for [run-]lengths is A351017.
The version for expansions is A351018, lengths A032020, ranked by A175413.
The version for patterns is A351200, lengths A351292.
The version for permutations of prime factors is A351202.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions whose permutations all have all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adr(s):
        runs = [(k, len(list(g))) for k, g in groupby(s)]
        return len(runs) == len(set(runs))
    def a(n):
        if n == 0: return 1
        return 2*sum(adr("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A351018(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
a(33)-a(38) from David A. Corneth, Feb 08 2022

A351596 Numbers k such that the k-th composition in standard order has all distinct run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 19, 21, 23, 26, 28, 30, 31, 32, 35, 36, 39, 42, 47, 56, 60, 62, 63, 64, 67, 71, 73, 74, 79, 84, 85, 87, 95, 100, 106, 112, 119, 120, 122, 123, 124, 126, 127, 128, 131, 135, 136, 138, 143, 146, 159, 164, 168, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   7:    111  (1,1,1)
   8:   1000  (4)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
  16:  10000  (5)
  19:  10011  (3,1,1)
  21:  10101  (2,2,1)
  23:  10111  (2,1,1,1)
		

Crossrefs

The version using binary expansions is A044813.
The version for Heinz numbers and prime multiplicities is A130091.
These compositions are counted by A329739, normal A329740.
The version for runs instead of run-lengths is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.
Selected statistics of standard compositions (A066099, A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Length/@Split[stc[#]]&]

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]
Showing 1-10 of 19 results. Next