cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033833 Highly factorable numbers: numbers with a record number of proper factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, 12960, 14400, 15120, 17280, 20160, 25920, 28800, 30240, 34560
Offset: 1

Views

Author

Keywords

Comments

First differs from A045783 and A330972 in lacking 60.
Indices of records in A028422 or A001055.

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
Factorizations of the initial terms:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

All terms belong to A025487 as well as to A330972.
The corresponding records are A272691.
The strict version is A331200.
Factorizations are A001055, with image A045782 and complement A330976.

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[facs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,qv//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe}}] (* Gus Wiseman, Jan 13 2020 *)

Formula

A001055(a(n)) = A272691(n). - Gus Wiseman, Jan 13 2020

A052002 Numbers with an odd number of partitions.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 16, 17, 18, 20, 23, 24, 29, 32, 33, 35, 36, 37, 38, 39, 41, 43, 44, 48, 49, 51, 52, 53, 54, 56, 60, 61, 63, 67, 68, 69, 71, 72, 73, 76, 77, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 99, 102, 104, 105, 107, 111, 114, 115, 118, 119, 121
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

A052003(n) = A000041(a(n+1)). - Reinhard Zumkeller, Nov 03 2015
Also, numbers having an odd number of partitions into distinct odd parts; that is, numbers m such that A000700(m) is odd. For example, 16 is in the list since 16 has 5 partitions into distinct odd parts, namely, 1 + 15, 3 + 13, 5 + 11, 7 + 9 and 1 + 3 + 5 + 7. See Formula section for a proof. - Peter Bala, Jan 22 2017

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The partitions of the initial terms are:
  (1)  (3)    (4)     (5)      (6)       (7)
       (21)   (22)    (32)     (33)      (43)
       (111)  (31)    (41)     (42)      (52)
              (211)   (221)    (51)      (61)
              (1111)  (311)    (222)     (322)
                      (2111)   (321)     (331)
                      (11111)  (411)     (421)
                               (2211)    (511)
                               (3111)    (2221)
                               (21111)   (3211)
                               (111111)  (4111)
                                         (22111)
                                         (31111)
                                         (211111)
                                         (1111111)
(End)
		

Crossrefs

The strict version is A001318, with complement A090864.
The version for prime instead of odd numbers is A046063.
The version for squarefree instead of odd numbers is A038630.
The version for set partitions appears to be A032766.
The version for factorizations is A331050.
The version for strict factorizations is A331230.

Programs

  • Haskell
    import Data.List (findIndices)
    a052002 n = a052002_list !! (n-1)
    a052002_list = findIndices odd a000041_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Maple
    N:= 1000: # to get all terms <= N
    V:= Vector(N+1):
    V[1]:= 1:
    for i from 1 to (N+1)/2  do
      V[2*i..N+1]:= V[2*i..N+1] + V[1..N-2*i+2] mod 2
    od:
    select(t -> V[t+1]=1, [$1..N]); # Robert Israel, Jan 22 2017
  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[2, k], {k, 0, 1}] (* Clark Kimberling, Jan 05 2014 *)
  • PARI
    for(n=0, 200, if(numbpart(n)%2==1, print1(n", "))) \\ Altug Alkan, Nov 02 2015
    

Formula

From Peter Bala, Jan 22 2016: (Start)
Sum_{n>=0} x^a(n) = (1 + x)*(1 + x^3)*(1 + x^5)*... taken modulo 2. Proof: Product_{n>=1} 1 + x^(2*n-1) = Product_{n>=1} (1 - x^(4*n-2))/(1 - x^(2*n-1)) = Product_{n>=1} (1 - x^(2*n))*(1 - x^(4*n-2))/( (1 - x^(2*n)) * (1 - x^(2*n-1)) ) = ( 1 + 2*Sum_{n>=1} (-1)^n*x^(2*n^2) )/(Product_{n>=1} (1 - x^n)) == 1/( Product_{n>=1} (1 - x^n) ) (mod 2). (End)

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Nov 03 2015

A050322 Number of factorizations indexed by prime signatures: A001055(A025487).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 5, 7, 9, 12, 11, 11, 16, 19, 21, 15, 29, 26, 30, 15, 31, 38, 22, 47, 52, 45, 36, 57, 64, 30, 77, 98, 67, 74, 97, 66, 105, 42, 109, 118, 92, 109, 171, 97, 141, 162, 137, 165, 56, 212, 181, 52, 198, 189, 289, 139, 250, 257, 269, 254, 77, 382, 267
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

For A025487(m) = 2^k = A000079(k), we have a(m) = A000041(k).
Is a(k) = A000110(k) for A025487(m) = A002110(k)?

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(11) = 9 factorizations:
  {}  2  4    6    8      12     16       24       30     32         36
         2*2  2*3  2*4    2*6    2*8      3*8      5*6    4*8        4*9
                   2*2*2  3*4    4*4      4*6      2*15   2*16       6*6
                          2*2*3  2*2*4    2*12     3*10   2*2*8      2*18
                                 2*2*2*2  2*2*6    2*3*5  2*4*4      3*12
                                          2*3*4           2*2*2*4    2*2*9
                                          2*2*2*3         2*2*2*2*2  2*3*6
                                                                     3*3*4
                                                                     2*2*3*3
(End)
		

Crossrefs

The version indexed by unsorted prime signature is A331049.
The version indexed by prime shadow (A181819, A181821) is A318284.
This sequence has range A045782 (same as A001055).

Programs

  • Maple
    A050322 := proc(n)
        A001055(A025487(n)) ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length/@facs/@First/@GatherBy[Range[1000],If[#==1,{},Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]

A331051 Numbers whose number of factorizations into factors > 1 (A001055) is even.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

First differs from A319240 in having 256.

Crossrefs

Complement of A331050.
The version for powers of two (instead of evens) is A330977.
The version for primes (instead of evens) is A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[300],EvenQ[Length[facs[#]]]&]

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A331231 Numbers k such that the number of factorizations of k into distinct factors > 1 is even.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319238 in having 300.

Crossrefs

The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The non-strict version is A331051.
The version for primes (instead of evens) is A331201.
The odd version is A331230.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],EvenQ[Length[strfacs[#]]]&]

A331049 Number of factorizations of A055932(n), the least representative of the n'th distinct unsorted prime signature, into factors > 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 4, 7, 5, 7, 9, 12, 7, 11, 11, 16, 11, 19, 16, 21, 15, 29, 11, 12, 26, 30, 15, 31, 38, 22, 21, 47, 26, 29, 52, 45, 36, 57, 26, 64, 19, 30, 52, 77, 52, 36, 57, 98, 21, 67, 38, 74, 97, 66, 105, 47, 42, 36, 109, 118, 98, 92, 109, 52, 171, 30
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. Factorizations are counted by A001055.
The unsorted prime signature of A055932(n) is given by row n of A124829.

Examples

			The a(1) = 1 through a(11) = 7 factorizations:
  {}  2  4    6    8      12     16       18     24       30     32
         2*2  2*3  2*4    2*6    2*8      2*9    3*8      5*6    4*8
                   2*2*2  3*4    4*4      3*6    4*6      2*15   2*16
                          2*2*3  2*2*4    2*3*3  2*12     3*10   2*2*8
                                 2*2*2*2         2*2*6    2*3*5  2*4*4
                                                 2*3*4           2*2*2*4
                                                 2*2*2*3         2*2*2*2*2
		

Crossrefs

The sorted-signature version is A050322.
This sequence has range A045782.
Factorizations are A001055.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length@*facs/@First/@GatherBy[Range[1500],If[#==1,{},Last/@FactorInteger[#]]&]

Formula

a(n) = A001055(A055932(n)).

A331198 Numbers n with exactly three times as many factorizations (A001055) as strict factorizations (A045778).

Original entry on oeis.org

128, 2187, 10368, 34992, 78125, 80000, 307328, 823543, 1250000, 1366875, 1874048, 3655808, 5250987, 6328125, 10690688, 13176688, 16681088, 19487171, 32019867, 35819648, 62462907, 62748517, 66706983, 90531968, 118210688, 182660427, 187578125, 239892608, 285012027
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

Contains p^7 for all primes p.

Examples

			The 15 factorizations and 5 strict factorizations of 2187:
  (2187)           (2187)
  (27*81)          (27*81)
  (3*729)          (3*729)
  (9*243)          (9*243)
  (3*9*81)         (3*9*81)
  (9*9*27)
  (3*27*27)
  (3*3*243)
  (3*9*9*9)
  (3*3*3*81)
  (3*3*9*27)
  (3*3*3*9*9)
  (3*3*3*3*27)
  (3*3*3*3*3*9)
  (3*3*3*3*3*3*3)
		

Crossrefs

Factorizations are A001055.
Strict factorizations are A045778.
Taking "twice" instead of "three times" gives A001248.

Programs

  • Mathematica
    facsm[n_]:=facsm[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsm[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100000],3==Length[facsm[#]]/Length[Select[facsm[#],UnsameQ@@#&]]&]

Extensions

a(7)-(10) from Alois P. Heinz, Jan 17 2020
a(11)-a(29) from Giovanni Resta, Jan 20 2020
Showing 1-9 of 9 results.