cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000700 Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of replicable function number 96a. - N. J. A. Sloane, Jun 10 2015
For n >= 1, a(n) is the minimal row sum in the character table of the symmetric group S_n. The minimal row sum in the table corresponds to the one-dimensional alternating representation of S_n. The maximal row sum is in sequence A085547. - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003
Also the number of partitions of n into parts != 2 and differing by >= 6 with strict inequality if a part is even. [Alladi]
Let S be the set formed by the partial sums of 1+[2,3]+[2,5]+[2,7]+[2,9]+..., where [2,odd] indicates a choice, e.g., we may have 1+2, or 1+3+2, or 1+3+5+2+9, etc. Then A000700(n) is the number of elements of S that equal n. Also A000700(n) is the same parity as A000041(n) (the partition numbers). - Jon Perry, Dec 18 2003
a(n) is for n >= 2 the number of conjugacy classes of the symmetric group S_n which split into two classes under restriction to A_n, the alternating group. See the G. James - A. Kerber reference given under A115200, p. 12, 1.2.10 Lemma and the W. Lang link under A115198.
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times (these are the conjugates of the partitions of n into distinct odd parts). Example: a(15)=4 because we have [3,3,3,2,2,1,1], [3,2,2,2,2,1,1,1,1], [3,2,2,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
The INVERTi transform of A000009 (number of partitions of n into odd parts starting with offset 1) = (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, ...); = left border of triangle A146061. - Gary W. Adamson, Oct 26 2008
For n even: the sum over all even nonnegative integers, k, such that k^2 < n, of the number of partitions of (n-k^2)/2 into parts of size at most k. For n odd: the sum over all odd nonnegative integers, j, such that j^2 < n, of the number of partitions of (n-j^2)/2 into parts of size at most j. - Graham H. Hawkes, Oct 18 2013
This number is also (the number of conjugacy classes of S_n containing even permutations) - (the number of conjugacy classes of S_n containing odd permutations) = (the number of partitions of n into a number of parts having the same parity as n) - (the number of partitions of n into a number of parts having opposite parity as n) = (the number of partitions of n with largest part having same parity as n) - (the number of partitions with largest part having opposite parity as n). - David L. Harden, Dec 09 2016
a(n) is odd iff n belongs to A052002; that is, Sum_{n>=0} x^A052002(n) == Sum_{n>=0} a(n)*x^n (mod 2). - Peter Bala, Jan 22 2017
Also the number of conjugacy classes of S_n whose members yield unique square roots, i.e., there exists a unique h in S_n such that hh = g for any g in such a conjugacy class. Proof: first note that a permutation's square roots are determined by the product of the square roots of its decomposition into cycles of different lengths. h can only travel to one other cycle before it must "return home" (h^2(x) = g(x) must be in x's cycle), and, because if g^n(x) = x then h^2n(x) = x and h^2n(h(x)) = h(x), this "traveling" must preserve cycle length or one cycle will outpace the other. However, a permutation decomposing into two cycles of the same length has multiple square roots: for example, e = e^2 = (a b)^2, (a b)(c d) = (a c b d)^2 = (a d b c)^2, (a b c)(d e f) = (a d b e c f)^2 = (a e b f c d)^2, etc. This is true for any cycle length so we need only consider permutations with distinct cycle lengths. Finally, even cycle lengths are odd permutations and thus cannot be square, while odd cycle lengths have the unique square root h(x) = g^((n+1)/2)(x). Thus there is a correspondence between these conjugacy classes and partitions into distinct odd parts. - Keith J. Bauer, Jan 09 2024
a(2*n) equals the number of partitions of n into parts congruent to +-2, +-3, +-4 or +-5 mod 16. See Merca, 2015, Corollary 4.3. - Peter Bala, Dec 12 2024

Examples

			T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ...
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A218907.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end;
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0,
           b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1))))
        end:
    a:= n-> b(n, iquo(n+1, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 12 2016
  • Mathematica
    CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *)
    Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *)
    conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}]  (* shows self-conjugate partitions *)
    Table[Length[s[n]], {n, 1, 20}]  (* A000700(n), n >= 1 *)
    (* Peter J. C. Moses, Mar 12 2014 *)
    CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *)
    (O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A000700_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x^2)^2/(f(x)*f(x^4)) ).list()
    A000700_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1)).
G.f.: Sum_{k>=0} x^(k^2)/Product_{i=1..k} (1-x^(2*i)). - Euler (Hardy and Wright, Theorem 345)
G.f.: 1/Product_{i>=1} (1 + (-x)^i). - Jon Perry, May 27 2004
Expansion of chi(q) = (-q; q^2)_oo = f(q) / f(-q^2) = phi(q) / f(q) = f(-q^2) / psi(-q) = phi(-q^2) / f(-q) = psi(q) / f(-q^4), where phi(), chi(), psi(), f() are Ramanujan theta functions.
Sum_{k=0..n} A081360(k)*a(n-k) = 0, for n > 0. - John W. Layman, Apr 26 2000
Euler transform of period-4 sequence [1, -1, 1, 0, ...].
Expansion of q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) in powers of q. - Michael Somos, Jun 11 2004
Asymptotics: a(n) ~ exp(Pi*l_n)/(2*24^(1/4)*l_n^(3/2)) where l_n = (n-1/24)^(1/2) (Ayoub). The asymptotic formula in Ayoub is incorrect, as that would imply faster growth than the total number of partitions. (It was quoted correctly, the book is just wrong, not sure what the correct asymptotic is.) - Edward Early, Nov 15 2002. Right formula is a(n) ~ exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 23 2014
a(n) = (1/n)*Sum_{k = 1..n} (-1)^(k+1)*b(k)*a(n-k), n>1, a(0) = 1, b(n) = A000593(n) = sum of odd divisors of n. - Vladeta Jovovic, Jan 19 2002 [see Theorem 2(a) in N. Robbins's article]
For n > 0: a(n) = b(n, 1) where b(n, k) = b(n-k, k+2) + b(n, k+2) if k < n, otherwise (n mod 2) * 0^(k-n). - Reinhard Zumkeller, Aug 26 2003
Expansion of q^(1/24) * (m * (1 - m) / 16)^(-1/24) in powers of q where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
Given g.f. A(x), B(q) = (1/q)* A(q^3)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v * (u - v^2) * (v - u^2) - (4 * (1 - u*v))^2. - Michael Somos, Jul 16 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
Expansion of q^(1/24)*f(t) in powers of q = exp(Pi*i*t) where f() is Weber's function. - Michael Somos, Oct 18 2007
A069911(n) = a(2*n + 1). A069910(n) = a(2*n).
a(n) = Sum_{k=1..n} (-1)^(n-k) A008284(n,k). - Jeremy L. Martin, Jul 06 2013
a(n) = S(n,1), where S(n,m) = Sum_{k=m..n/2} (-1)^(k+1)*S(n-k,k) + (-1)^(n+1), S(n,n)=(-1)^(n+1), S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
G.f.: Product_{k>0} (1 + x^(2*k-1)) = Product_{k>0} (1 - (-x)^k) / (1 - (-x)^(2*k)) = Product_{k>0} 1 / (1 + (-x)^k). - Michael Somos, Nov 08 2014
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/12) / sqrt(24*n-1) ~ exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(6)/(8*Pi) + Pi/(48*sqrt(6))) / sqrt(n) + (5/128 - 45/(64*Pi^2) + Pi^2/27648) / n). - Vaclav Kotesovec, Jan 08 2017
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Given g.f. A(x), B(q) = (1/q) * A(q^24) / 2^(1/4) satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 + 2*u*v * (1 - (u*v)^4). - Michael Somos, Mar 14 2019
G.f.: Sum_{n >= 0} x^n/Product_{i = 1..n} ( 1 + (-1)^(i+1)*x^i ). - Peter Bala, Nov 30 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x) * Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = ....
G.f.: 1/(1 + x) * Sum_{n >= 0} x^(n-1)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)) * Sum_{n >= 0} x^(n-2)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)*(1 + x^5)) * Sum_{n >= 0} x^(n-3)^2/ Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
a(n) = A046682(n) - A000701(n). See Gupta and also Ballantine et al. - Michel Marcus, Sep 04 2021
G.f.: A(x) = exp( Sum_{k >= 1} (-1)^k/(k*(x^k - x^(-k))) ). - Peter Bala, Dec 23 2021

A036042 k appears partition(k) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, 1972, p. 831, column labeled "n".

Crossrefs

Programs

  • Mathematica
    Table[ConstantArray[n, PartitionsP[n]], {n, 0, 9}] // Flatten  (* Robert Price, Jun 12 2020 *)

Formula

Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=2} (-1)^n/A052002(n) = 0.78686... . - Amiram Eldar, Feb 18 2024

A052001 Even partition numbers.

Original entry on oeis.org

2, 22, 30, 42, 56, 176, 490, 792, 1002, 1958, 2436, 3010, 3718, 5604, 6842, 12310, 37338, 53174, 89134, 105558, 124754, 204226, 451276, 614154, 715220, 831820, 1300156, 1741630, 2012558, 2323520, 4087968, 7089500, 8118264, 12132164
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Intersection of A005843 and A000041; A059841(a(n)) * A167392(a(n)) = 1. [Reinhard Zumkeller, Nov 03 2009]

Crossrefs

Programs

  • Haskell
    a052001 n = a052001_list !! (n-1)
    a052001_list = filter even a000041_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Mathematica
    Select[PartitionsP[Range[100]], EvenQ] (* Jean-François Alcover, Mar 01 2019 *)
  • PARI
    for(n=1, 100, if((k=numbpart(n))%2==0, print1(k", "))) \\ Altug Alkan, Nov 02 2015
    

Formula

a(n) = 2*A213179(n). - Omar E. Pol, May 08 2013

Extensions

Offset corrected by Reinhard Zumkeller, Nov 03 2015

A001560 Numbers with an even number of partitions.

Original entry on oeis.org

2, 8, 9, 10, 11, 15, 19, 21, 22, 25, 26, 27, 28, 30, 31, 34, 40, 42, 45, 46, 47, 50, 55, 57, 58, 59, 62, 64, 65, 66, 70, 74, 75, 78, 79, 80, 84, 86, 94, 96, 97, 98, 100, 101, 103, 106, 108, 109, 110, 112, 113, 116, 117, 120, 122, 124, 125, 126, 128, 129, 130, 131
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]; Table[f[2, k], {k, 0, 1}] (* Clark Kimberling, Jan 05 2014 *)
  • PARI
    is(n)=numbpart(n)%2==0 \\ Charles R Greathouse IV, Apr 08 2015

A052003 Odd partition numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 77, 101, 135, 231, 297, 385, 627, 1255, 1575, 4565, 8349, 10143, 14883, 17977, 21637, 26015, 31185, 44583, 63261, 75175, 147273, 173525, 239943, 281589, 329931, 386155, 526823, 966467, 1121505, 1505499, 2679689, 3087735
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Intersection of A005408 and A000041; A000035(a(n))*A167392(a(n)) = 1; a(n) = A000041(A052002(n+1)). - Reinhard Zumkeller, Nov 03 2015

Crossrefs

Programs

  • Haskell
    a052003 n = a052003_list !! n
    a052003_list = filter odd a000041_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Maple
    select(type, [seq(combinat:-numbpart(n),n=1..200)],odd); # Robert Israel, Nov 03 2015
  • Mathematica
    Select[PartitionsP[Range[50]], OddQ] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    for(n=1, 100, if((k=numbpart(n))%2==1, print1(k", "))) \\ Altug Alkan, Nov 02 2015
    

A278478 a(n) is the 2-adic valuation of A000041(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 3, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 0, 1, 1, 6, 0, 0, 0, 5, 0, 0, 0, 2, 3, 0, 0, 2, 1, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 11, 1, 3, 0, 2, 1, 0, 1, 0, 0, 4, 0, 2, 7, 1, 0, 2, 2, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Joerg Arndt, Nov 23 2016

Keywords

Comments

Write A000041(n) = 2^k * s where s is odd, then a(n) = k.

Crossrefs

Cf. A052002, A237280, A278779, A278780, A278781, A278782, A278783, A278784 (positions of terms 0, 1, 2, ..., 7 in this sequence).
Cf. also A278241.

Programs

  • Maple
    a:= n-> padic[ordp](combinat[numbpart](n), 2):
    seq(a(n), n=0..120);  # Alois P. Heinz, Nov 23 2016
  • Mathematica
    a[n_] := IntegerExponent[PartitionsP[n], 2]; Array[a, 100, 0] (* Amiram Eldar, May 25 2024 *)
  • PARI
    { my( x='x+O('x^100), v=Vec(1/eta(x)) ); vector(#v,n,valuation(v[n],2)) }

Formula

From Amiram Eldar, May 25 2024: (Start)
a(n) = A007814(A000041(n)).
a(n) = log_2(A069935(n)). (End)

A163097 Even numbers with an odd number of partitions.

Original entry on oeis.org

0, 4, 6, 12, 14, 16, 18, 20, 24, 32, 36, 38, 44, 48, 52, 54, 56, 60, 68, 72, 76, 82, 88, 90, 92, 102, 104, 114, 118, 132, 134, 138, 140, 144, 146, 148, 150, 152, 156, 162, 164, 166, 168, 172, 178, 182, 186, 188, 190, 192, 194, 196, 202, 204, 208, 210, 212, 214, 216
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[2*Range[0,150],OddQ[PartitionsP[#]]&] (* Harvey P. Dale, Nov 13 2013 *)

Extensions

More terms from Sean A. Irvine, Oct 26 2009

A163998 Primes p having the same parity as the number of partitions of p.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 29, 37, 41, 43, 53, 61, 67, 71, 73, 83, 89, 107, 127, 139, 157, 173, 181, 193, 199, 211, 223, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 311, 313, 331, 349, 367, 373, 389, 401, 421, 433, 443, 457, 461, 463, 467, 479, 491, 499
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2009

Keywords

Comments

Except the first term, primes with an odd number of partitions.
Primes in A194798. - Omar E. Pol, Mar 17 2012

Examples

			7 is in the sequence because the number of partitions of 7 is equal to 15 and both 7 and 15 have the same parity.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], Mod[PartitionsP[#] - #, 2] == 0 &] (* T. D. Noe, Jan 30 2012 *)

Extensions

More terms from D. S. McNeil, May 10 2010

A280289 Numbers n such that number of partitions of n is odd and number of partitions of n into distinct parts is even.

Original entry on oeis.org

3, 4, 6, 13, 14, 16, 17, 18, 20, 23, 24, 29, 32, 33, 36, 37, 38, 39, 41, 43, 44, 48, 49, 52, 53, 54, 56, 60, 61, 63, 67, 68, 69, 71, 72, 73, 76, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 95, 99, 102, 104, 105, 107, 111, 114, 115, 118, 119, 121, 123, 127, 132, 134, 138, 139, 140, 143, 144, 146, 148, 150, 152, 156, 157, 159
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Comments

Intersection of A052002 and A090864.
Numbers n such that A000035(A000041(n)) = 1 and A000035(A000009(n)) = 0.

Examples

			6 is in the sequence because we have:
----------------------------------
number of partitions = 11 (is odd)
----------------------------------
6 = 6
5 + 1 = 6
4 + 2 = 6
4 + 1 + 1 = 6
3 + 3 = 6
3 + 2 + 1 = 6
3 + 1 + 1 + 1 = 6
2 + 2 + 2 = 6
2 + 2 + 1 + 1 = 6
2 + 1 + 1 + 1 + 1 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6
------------------------------------------------------
number of partitions into distinct parts = 4 (is even)
------------------------------------------------------
6 = 6
5 + 1 = 6
4 + 2 = 6
3 + 2 + 1 = 6
		

Crossrefs

Programs

  • Mathematica
    Select[Range[160], Mod[PartitionsP[#1], 2] == 1 && Mod[PartitionsQ[#1], 2] == 0 & ]

A280291 Numbers n such that number of partitions of n is odd and number of partitions of n into distinct parts is odd.

Original entry on oeis.org

0, 1, 5, 7, 12, 35, 51, 77, 92, 145, 155, 210, 222, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 610, 672, 737, 805, 852, 876, 1190, 1247, 1335, 1426, 1617, 1717, 1855, 1962, 2035, 2147, 2542, 2625, 2795, 2882, 3197, 3337, 3480, 3626, 3775, 3876, 4030, 4347, 4510, 4565, 4845, 4902
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Comments

Intersection of A001318 and A052002.
Numbers n such that A000035(A000041(n)) = 1 and A000035(A000009(n)) = 1.

Examples

			7 is in the sequence because we have:
----------------------------------
number of partitions = 15 (is odd)
----------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
5 + 1 + 1 = 7
4 + 3 = 7
4 + 2 + 1 = 7
4 + 1 + 1 + 1 = 7
3 + 3 + 1 = 7
3 + 2 + 2 = 7
3 + 2 + 1 + 1 = 7
3 + 1 + 1 + 1 + 1 = 7
2 + 2 + 2 + 1 = 7
2 + 2 + 1 + 1 + 1 = 7
2 + 1 + 1 + 1 + 1 + 1 = 7
1 + 1 + 1 + 1 + 1 + 1 + 1 = 7
-----------------------------------------------------
number of partitions into distinct parts = 5 (is odd)
-----------------------------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
4 + 3 = 7
4 + 2 + 1 = 7
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[5000], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 1 & ]]

Extensions

a(1)=0 inserted by Alois P. Heinz, Dec 31 2016
Showing 1-10 of 14 results. Next