cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A052001 Even partition numbers.

Original entry on oeis.org

2, 22, 30, 42, 56, 176, 490, 792, 1002, 1958, 2436, 3010, 3718, 5604, 6842, 12310, 37338, 53174, 89134, 105558, 124754, 204226, 451276, 614154, 715220, 831820, 1300156, 1741630, 2012558, 2323520, 4087968, 7089500, 8118264, 12132164
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

Intersection of A005843 and A000041; A059841(a(n)) * A167392(a(n)) = 1. [Reinhard Zumkeller, Nov 03 2009]

Crossrefs

Programs

  • Haskell
    a052001 n = a052001_list !! (n-1)
    a052001_list = filter even a000041_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Mathematica
    Select[PartitionsP[Range[100]], EvenQ] (* Jean-François Alcover, Mar 01 2019 *)
  • PARI
    for(n=1, 100, if((k=numbpart(n))%2==0, print1(k", "))) \\ Altug Alkan, Nov 02 2015
    

Formula

a(n) = 2*A213179(n). - Omar E. Pol, May 08 2013

Extensions

Offset corrected by Reinhard Zumkeller, Nov 03 2015

A052002 Numbers with an odd number of partitions.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 16, 17, 18, 20, 23, 24, 29, 32, 33, 35, 36, 37, 38, 39, 41, 43, 44, 48, 49, 51, 52, 53, 54, 56, 60, 61, 63, 67, 68, 69, 71, 72, 73, 76, 77, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 99, 102, 104, 105, 107, 111, 114, 115, 118, 119, 121
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

A052003(n) = A000041(a(n+1)). - Reinhard Zumkeller, Nov 03 2015
Also, numbers having an odd number of partitions into distinct odd parts; that is, numbers m such that A000700(m) is odd. For example, 16 is in the list since 16 has 5 partitions into distinct odd parts, namely, 1 + 15, 3 + 13, 5 + 11, 7 + 9 and 1 + 3 + 5 + 7. See Formula section for a proof. - Peter Bala, Jan 22 2017

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The partitions of the initial terms are:
  (1)  (3)    (4)     (5)      (6)       (7)
       (21)   (22)    (32)     (33)      (43)
       (111)  (31)    (41)     (42)      (52)
              (211)   (221)    (51)      (61)
              (1111)  (311)    (222)     (322)
                      (2111)   (321)     (331)
                      (11111)  (411)     (421)
                               (2211)    (511)
                               (3111)    (2221)
                               (21111)   (3211)
                               (111111)  (4111)
                                         (22111)
                                         (31111)
                                         (211111)
                                         (1111111)
(End)
		

Crossrefs

The strict version is A001318, with complement A090864.
The version for prime instead of odd numbers is A046063.
The version for squarefree instead of odd numbers is A038630.
The version for set partitions appears to be A032766.
The version for factorizations is A331050.
The version for strict factorizations is A331230.

Programs

  • Haskell
    import Data.List (findIndices)
    a052002 n = a052002_list !! (n-1)
    a052002_list = findIndices odd a000041_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Maple
    N:= 1000: # to get all terms <= N
    V:= Vector(N+1):
    V[1]:= 1:
    for i from 1 to (N+1)/2  do
      V[2*i..N+1]:= V[2*i..N+1] + V[1..N-2*i+2] mod 2
    od:
    select(t -> V[t+1]=1, [$1..N]); # Robert Israel, Jan 22 2017
  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[2, k], {k, 0, 1}] (* Clark Kimberling, Jan 05 2014 *)
  • PARI
    for(n=0, 200, if(numbpart(n)%2==1, print1(n", "))) \\ Altug Alkan, Nov 02 2015
    

Formula

From Peter Bala, Jan 22 2016: (Start)
Sum_{n>=0} x^a(n) = (1 + x)*(1 + x^3)*(1 + x^5)*... taken modulo 2. Proof: Product_{n>=1} 1 + x^(2*n-1) = Product_{n>=1} (1 - x^(4*n-2))/(1 - x^(2*n-1)) = Product_{n>=1} (1 - x^(2*n))*(1 - x^(4*n-2))/( (1 - x^(2*n)) * (1 - x^(2*n-1)) ) = ( 1 + 2*Sum_{n>=1} (-1)^n*x^(2*n^2) )/(Product_{n>=1} (1 - x^n)) == 1/( Product_{n>=1} (1 - x^n) ) (mod 2). (End)

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Nov 03 2015

A163096 Odd numbers with an even number of partitions.

Original entry on oeis.org

9, 11, 15, 19, 21, 25, 27, 31, 45, 47, 55, 57, 59, 65, 75, 79, 97, 101, 103, 109, 113, 117, 125, 129, 131, 133, 135, 137, 141, 147, 149, 151, 153, 163, 167, 171, 175, 179, 187, 191, 197, 205, 207, 213, 217, 227, 231, 241, 243, 245, 247, 253, 255, 265, 267, 271
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1,500,2],EvenQ[PartitionsP[#]]&] (* Vincenzo Librandi, Mar 19 2012 *)

Extensions

More terms from Sean A. Irvine, Oct 26 2009

A243935 Numbers m such that 5 divides A000041(m).

Original entry on oeis.org

4, 7, 9, 14, 18, 19, 23, 24, 27, 29, 34, 38, 39, 44, 49, 54, 58, 59, 61, 64, 66, 68, 69, 71, 74, 79, 82, 84, 89, 94, 97, 99, 103, 104, 109, 114, 119, 120, 124, 127, 128, 129, 130, 134, 136, 139, 140, 142, 144, 149, 154, 159, 163, 164, 165, 169, 170, 173, 174
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), this sequence (k=5), A243936 (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..200] | IsZero(NumberOfPartitions(n) mod 5)];
    
  • Mathematica
    Select[Range[200], Mod[PartitionsP[#], 5] == 0 &]
  • PARI
    is(n)=numbpart(n)%5==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..200) if mod(A000041(n),5) == 0]
    

A163997 Primes with an even number of partitions.

Original entry on oeis.org

2, 11, 19, 31, 47, 59, 79, 97, 101, 103, 109, 113, 131, 137, 149, 151, 163, 167, 179, 191, 197, 227, 241, 271, 307, 317, 337, 347, 353, 359, 379, 383, 397, 409, 419, 431, 439, 449, 487, 503, 509, 521, 523, 541, 557, 563, 569, 571, 577, 599, 607, 631, 641, 643
Offset: 1

Views

Author

Omar E. Pol, Aug 09 2009

Keywords

Examples

			11 is in the sequence because the number of partitions of 11 is equal to 56 and 56 is an even number.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]],EvenQ[PartitionsP[#]]&] (* Harvey P. Dale, Jul 01 2019 *)

Extensions

More terms from Sean A. Irvine, Oct 18 2009

A280288 Numbers n such that number of partitions of n is even and number of partitions of n into distinct parts is odd.

Original entry on oeis.org

2, 15, 22, 26, 40, 57, 70, 100, 117, 126, 176, 187, 247, 260, 532, 551, 590, 651, 715, 782, 925, 950, 1001, 1027, 1080, 1107, 1162, 1276, 1365, 1457, 1520, 1552, 1650, 1751, 1820, 1926, 2072, 2185, 2262, 2301, 2380, 2420, 2501, 2667, 2752, 2926, 3015, 3060, 3151, 3290, 3432, 3577, 3725, 3927, 4082, 4187, 4240, 4401
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Comments

Intersection of A001318 and A001560.
Numbers n such that A000035(A000041(n)) = 0 and A000035(A000009(n)) = 1.

Examples

			15 is in the sequence because we have:
------------------------------------
number of partitions = 176 (is even)
------------------------------------
15 = 15
14 + 1 = 15
13 + 2 = 15
13 + 1 + 1 = 15
12 + 3 = 15
12 + 2 + 1 = 15
12 + 1 + 1 + 1 = 15
11 + 4 = 15
11 + 3 + 1 = 15
11 + 2 + 2 = 15
11 + 2 + 1 + 1 = 15
11 + 1 + 1 + 1 + 1 = 15
...
------------------------------------------------------
number of partitions into distinct parts = 27 (is odd)
------------------------------------------------------
15 = 15
14 + 1 = 15
13 + 2 = 15
12 + 3 = 15
12 + 2 + 1 = 15
11 + 4 = 15
11 + 3 + 1 = 15
10 + 5 = 15
10 + 4 + 1 = 15
10 + 3 + 2 = 15
...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4500], Mod[PartitionsP[#1], 2] == 0 && Mod[PartitionsQ[#1], 2] == 1 & ]

A280290 Numbers n such that number of partitions of n is even and number of partitions of n into distinct parts is even.

Original entry on oeis.org

8, 9, 10, 11, 19, 21, 25, 27, 28, 30, 31, 34, 42, 45, 46, 47, 50, 55, 58, 59, 62, 64, 65, 66, 74, 75, 78, 79, 80, 84, 86, 94, 96, 97, 98, 101, 103, 106, 108, 109, 110, 112, 113, 116, 120, 122, 124, 125, 128, 129, 130, 131, 133, 135, 136, 137, 141, 142, 147, 149, 151, 153, 154, 158, 160, 163, 167, 170, 171, 174, 175, 179, 180
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 31 2016

Keywords

Comments

Intersection of A001560 and A090864.
Numbers n such that A000035(A000041(n)) = 0 and A000035(A000009(n)) = 0.

Examples

			8 is in the sequence because we have:
-----------------------------------
number of partitions = 22 (is even)
-----------------------------------
8 = 8
7 + 1 = 8
6 + 2 = 8
6 + 1 + 1 = 8
5 + 3 = 8
5 + 2 + 1 = 8
5 + 1 + 1 + 1 = 8
4 + 4 = 8
4 + 3 + 1 = 8
4 + 2 + 2 = 8
4 + 2 + 1 + 1 = 8
4 + 1 + 1 + 1 + 1 = 8
3 + 3 + 2 = 8
3 + 3 + 1 + 1 = 8
3 + 2 + 2 + 1 = 8
3 + 2 + 1 + 1 + 1 = 8
3 + 1 + 1 + 1 + 1 + 1 = 8
2 + 2 + 2 + 2 = 8
2 + 2 + 2 + 1 + 1 = 8
2 + 2 + 1 + 1 + 1 + 1 = 8
2 + 1 + 1 + 1 + 1 + 1 + 1 = 8
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8
-------------------------------------------------------
number of partitions into distinct parts = 6 (is even)
-------------------------------------------------------
8 = 8
7 + 1 = 8
6 + 2 = 8
5 + 3 = 8
5 + 2 + 1 = 8
4 + 3 + 1 = 8
		

Crossrefs

Programs

  • Mathematica
    Select[Range[180], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 0 & ]

A306956 Sum over all partitions of n into distinct parts of the LCM of the parts.

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 21, 39, 58, 90, 142, 218, 325, 465, 695, 948, 1411, 1977, 2883, 3940, 5415, 7422, 10126, 14091, 18947, 25666, 34282, 45890, 60710, 82211, 108510, 142960, 185271, 240595, 315158, 409231, 531967, 688689, 880997, 1126451, 1447754, 1849743
Offset: 0

Views

Author

Alois P. Heinz, Mar 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..44);
  • Mathematica
    b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0, If[n == 0, r, b[n, i-1, r] + b[n-i, Min[i-1, n-i], LCM[i, r]]]];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 44}] (* Jean-François Alcover, Mar 20 2019, translated from Maple *)

Formula

a(n) mod 2 = A040051(n).
a(n) is even <=> n in { A001560 }.
a(n) is odd <=> n in { A052002 }.

A331231 Numbers k such that the number of factorizations of k into distinct factors > 1 is even.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319238 in having 300.

Crossrefs

The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The non-strict version is A331051.
The version for primes (instead of evens) is A331201.
The odd version is A331230.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],EvenQ[Length[strfacs[#]]]&]

A243936 Numbers m such that 7 divides A000041(m).

Original entry on oeis.org

5, 10, 11, 12, 16, 18, 19, 24, 26, 27, 33, 37, 39, 40, 41, 47, 48, 52, 53, 54, 55, 61, 68, 75, 76, 82, 83, 89, 96, 97, 103, 110, 111, 117, 124, 125, 131, 138, 140, 145, 147, 152, 159, 166, 170, 173, 177, 180, 187, 191, 194, 201, 208, 213, 215, 222, 225, 229, 232
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), A243935 (k=5), this sequence (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..250] | IsZero(NumberOfPartitions(n) mod 7)];
    
  • Mathematica
    Select[Range[250], Mod[PartitionsP[#], 7] == 0 &]
  • PARI
    is(n)=numbpart(n)%7==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..250) if mod(A000041(n),7) == 0]
    
Showing 1-10 of 11 results. Next