cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A271592 Array read by antidiagonals: T(n,m) = number of directed Hamiltonian walks from NW to SW corners on a grid with n rows and m columns.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 4, 0, 1, 0, 1, 4, 8, 8, 1, 1, 0, 1, 0, 23, 0, 16, 0, 1, 0, 1, 8, 55, 86, 47, 32, 1, 1, 0, 1, 0, 144, 0, 397, 0, 64, 0, 1, 0, 1, 16, 360, 948, 1770, 1584, 264, 128, 1, 1, 0, 1, 0, 921, 0, 11658, 0, 6820, 0, 256, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 10 2016

Keywords

Examples

			The start of the sequence as table:
* 1 0   0   0     0     0       0       0          0 ...
* 1 1   1   1     1     1       1       1          1 ...
* 1 0   2   0     4     0       8       0         16 ...
* 1 1   4   8    23    55     144     360        921 ...
* 1 0   8   0    86     0     948       0      10444 ...
* 1 1  16  47   397  1770   11658   59946     359962 ...
* 1 0  32   0  1584     0   88418       0    4999752 ...
* 1 1  64 264  6820 52387  909009 8934966  130373192 ...
* 1 0 128   0 28002     0 7503654       0 2087813834 ...
* ...
		

Crossrefs

Column 4 is aerated A014524, column 5 is A014585.
Rows include A181688, A181689.
Main diagonal is A000532.
Cf. A333580.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271592(n, k):
        if k == 1: return 1
        universe = tl.grid(k - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    print([A271592(j + 1, i - j + 1) for i in range(12) for j in range(i + 1)])  # Seiichi Manyama, Mar 28 2020

Formula

T(n,m)=0 for n odd and m even, T(1,n)=0 for n>1.
T(2,n)=T(n,1)=T(2*n,2)=1, T(3,2*n+1)=T(n+1,3)=2^n.

A001184 Number of simple Hamiltonian paths connecting opposite corners of a 2n+1 X 2n+1 grid.

Original entry on oeis.org

1, 2, 104, 111712, 2688307514, 1445778936756068, 17337631013706758184626, 4628650743368437273677525554148, 27478778338807945303765092195103685118924
Offset: 0

Views

Author

Don Knuth, Dec 07 1995

Keywords

Crossrefs

Formula

a(n) = A121788(2n), n>0. - Ashutosh Mehra, Dec 19 2008

Extensions

a(7)-a(8) copied from A121788 by Alois P. Heinz, Sep 27 2014

A014584 Number of Hamiltonian paths in a 5 X n grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

0, 1, 1, 8, 20, 104, 378, 1670, 6706, 28417, 117204, 490865, 2039569, 8512474, 35444636, 147780722, 615715196, 2566325356, 10694300534, 44570089963, 185740837148, 774080813649, 3225945847829, 13444117980220, 56028001091944, 233495908297044, 973089296878098, 4055332929187618, 16900521902518438
Offset: 0

Views

Author

Keywords

Comments

The difference between A014584 and A014585 needs to be clarified. - N. J. A. Sloane, Feb 08 2013
The difference is that this sequence counts Hamiltonian paths that start in the lower left corner and end in the upper right. A014585 counts Hamiltonian paths that start in the lower left and finish in the lower right. - Ruben Zilibowitz, Jul 05 2015

Crossrefs

Row n=5 of A333580.
Cf. A014585.

Formula

The reference gives a generating function.

Extensions

Definition clarified by Ruben Zilibowitz, Jul 05 2015
a(24)-a(28) from Seiichi Manyama, Mar 27 2020

A333585 Number of Hamiltonian paths in a 10 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

1, 256, 117204, 68939685, 43598351250, 28467653231928, 18879702000329222, 12620031290571348940, 8469937551020819909757, 5696439378813116535052879, 3835239247888770485464962184, 2583576672252172117218927779417, 1740899369113326621618848563838108
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333580(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333585(n):
        return A333580(10, 2 * n + 1)
    print([A333585(n) for n in range(7)])

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022

A333581 Number of Hamiltonian paths in a 6 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

1, 16, 378, 10204, 286395, 8142184, 232408228, 6641558434, 189856823709, 5427696641303, 155171211771501, 4436158800822989, 126824318787312712, 3625748174071085779, 103655548766966797516, 2963380335725281547187, 84719269552230266413889, 2422015949371169505273833
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333580(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333581(n):
        return A333580(6, 2 * n + 1)
    print([A333581(n) for n in range(10)])

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 30 2022

A333582 Number of Hamiltonian paths in a 7 X n grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

1, 1, 32, 111, 1670, 10204, 111712, 851073, 8261289, 68939685, 637113287, 5521505724, 49977297839, 440051896440, 3947537767621, 34992551369200, 312684850861298, 2779712414621925, 24796726969942763, 220708765035288988, 1967401456946216789, 17520501580778152908
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2020

Keywords

Crossrefs

Row n=7 of A333580.
Cf. A014584.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333580(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333582(n):
        return A333580(n, 7)
    print([A333582(n) for n in range(1, 25)])

A333583 Number of Hamiltonian paths in an 8 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

1, 64, 6706, 851073, 114243216, 15695570146, 2178079125340, 303568139329711, 42388918310108440, 5923750747499881068, 828111786035239457647, 115782566867663040724929, 16189114623816733581826838, 2263672174616450290622937801, 316525123224847580237219904819
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333580(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333583(n):
        return A333580(8, 2 * n + 1)
    print([A333583(n) for n in range(7)])

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022

A333584 Number of Hamiltonian paths in a 9 X n grid starting at the lower left corner and finishing in the upper right corner.

Original entry on oeis.org

1, 1, 128, 624, 28417, 286395, 8261289, 114243216, 2688307514, 43598351250, 928370853748, 16331387665387, 330593938169845, 6062963019120077, 119575303856316650, 2240422461856052342, 43592076562463162280, 825830699757513748579, 15955080499901505066753
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2020

Keywords

Crossrefs

Row n=9 of A333580.
Cf. A014584.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333580(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333584(n):
        return A333580(n, 9)
    print([A333584(n) for n in range(1, 20)])

A333863 Number of Hamiltonian paths in a 2*(2*n+1) X (2*n+1) grid starting at the upper left corner and finishing in the lower right corner.

Original entry on oeis.org

1, 16, 117204, 440051896440, 825830699757513748579, 769203260676279544212492116449800, 354179806054404909542325896762875458037457353029, 80433401895946253522491939742836167238530417144721958187080077425
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333863(n):
        universe = tl.grid(4 * n + 1, 2 * n)
        GraphSet.set_universe(universe)
        start, goal = 1, 2 * (2 * n + 1) ** 2
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    print([A333863(n) for n in range(7)])

Formula

a(n) = A333580(2*(2*n+1), 2*n+1).

Extensions

More terms from Ed Wynn, Jun 28 2023
Showing 1-9 of 9 results.