A036036 Triangle read by rows in which row n lists all the parts of all reversed partitions of n, sorted first by length and then lexicographically.
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5, 1, 2, 4, 1, 3, 3, 2, 2, 3, 1, 1, 1
Offset: 1
Examples
1 2; 1,1 3; 1,2; 1,1,1 4; 1,3; 2,2; 1,1,2; 1,1,1,1 5; 1,4; 2,3; 1,1,3; 1,2,2; 1,1,1,2; 1,1,1,1,1; 6; 1,5; 2,4; 3,3; 1,1,4; 1,2,3; 2,2,2; 1,1,1,3; 1,1,2,2; 1,1,1,1,2; 1,1,1,1,1,1; ...
References
- Abramowitz and Stegun, Handbook, p. 831, column labeled "pi".
- D. Knuth, The Art of Computer Programming, Vol. 4, fascicle 3, 7.2.1.4, Addison-Wesley, 2005.
Links
- Franklin T. Adams-Watters, First 20 rows, flattened.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. (uses Flash)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions.
- C. F. Hindenburg, Infinitinomii Dignitatum Exponentis Indeterminati, Goettingen 1779.
- Peter Luschny, Counting with partitions.
- OEIS Wiki, Orderings of partitions (a comparison).
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
See A036037 for the graded colexicographic ordering.
See A080576 for the Maple (graded reflected lexicographic) ordering.
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A193073 for the graded lexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
The version ignoring length is A026791.
Same as A036037 with partitions reversed.
The lengths of these partitions are A036043.
The number of distinct parts is A103921.
The corresponding ordering of compositions is A124734.
Showing partitions as Heinz numbers gives A185974.
The version for non-reversed partitions is A334301.
Lexicographically ordered reversed partitions are A026791.
Sorting reversed partitions by Heinz number gives A112798.
The version for revlex instead of lex is A334302.
The version for revlex instead of colex is A334442.
Programs
-
Mathematica
Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 07 2020 *) - or - colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}]; Reverse/@Join@@Table[Sort[IntegerPartitions[n],colen],{n,0,8}] (* Gus Wiseman, May 07 2020 *)
-
PARI
T036036(n,k)=k&&return(T036036(n)[k]);concat(partitions(n)) \\ If 2nd arg "k" is not given, return the n-th row as a vector. Assumes PARI version >= 2.7.1. See A193073 for "hand made" code. concat(vector(8,n,T036036(n))) \\ to get the "flattened" sequence \\ M. F. Hasler, Jul 12 2015
Extensions
Edited by Daniel Forgues, Jan 21 2011
Edited by M. F. Hasler, Jul 12 2015
Name corrected by Gus Wiseman, May 12 2020
Comments