A185369
Number of simple labeled graphs on n nodes of degree 1 or 2 without cycles.
Original entry on oeis.org
1, 0, 1, 3, 15, 90, 645, 5355, 50505, 532980, 6219045, 79469775, 1103335695, 16533226710, 265888247625, 4566885297975, 83422361847825, 1614626682669000, 33003508539026025, 710350201433547675, 16057073233633006575
Offset: 0
a(4) = 15 because there are 15 simple labeled graphs on 4 nodes of degree 1 or 2 without cycles: 1-2 3-4, 1-3 2-4, 1-4 2-3, 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, 1-4-3-2, 2-1-3-4, 2-1-4-3, 3-1-2-4, 3-1-4-2, 4-1-2-3, 4-1-3-2.
- Herbert S. Wilf, Generatingfunctionology, p. 104.
-
a:= proc(n) option remember;
`if`(n<2, 1-n, add(binomial(n-1, k-1) *k!/2 *a(n-k), k=2..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 24 2011
-
a=1/(2(1-x))-1/2-x/2;
Range[0,20]! CoefficientList[Series[Exp[a],{x,0,20}],x]
A361567
Expansion of e.g.f. exp(x^2/2 * (1+x)^2).
Original entry on oeis.org
1, 0, 1, 6, 15, 60, 555, 3150, 17745, 158760, 1399545, 10914750, 102920895, 1104323220, 11249313075, 119330961750, 1426411411425, 17429852840400, 213417453474225, 2791671804271350, 38524272522310575, 537569719902715500, 7732658753799054075
Offset: 0
-
Table[n! * Sum[Binomial[2*k,n-2*k]/(2^k * k!), {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2*(1+x)^2)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/2*sum(j=2, i, j*binomial(2, j-2)*v[i-j+1]/(i-j)!)); v;
A361596
Expansion of e.g.f. exp( x^2/(2 * (1-x)^2) ) / (1-x).
Original entry on oeis.org
1, 1, 3, 15, 99, 795, 7485, 80745, 981225, 13253625, 196834995, 3185662095, 55770765435, 1049572599075, 21120725230605, 452384160453225, 10272547048388625, 246434674107647025, 6226347228582355875, 165224032352989584975, 4593512876411509125075
Offset: 0
-
Table[n! * Sum[Binomial[n,2*k]/(2^k * k!), {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(2*(1-x)^2))/(1-x)))
A335345
Expansion of e.g.f. exp(x^2/(2*(1 - x)^3)).
Original entry on oeis.org
1, 0, 1, 9, 75, 690, 7305, 89145, 1237425, 19221300, 329371245, 6157738125, 124551652995, 2707913238030, 62945320162725, 1557291398788125, 40844991621859425, 1131753403094113800, 33025920511859300025, 1012128709342410284625, 32494107983067177522075
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[x^2/(2 (1 - x)^3)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (1/4) Sum[Binomial[n - 1, k - 1] k (k - 1) k! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
-
seq(n)=Vec(serlaplace(exp(x^2/(2*(1 - x)^3) + O(x*x^n)))) \\ Andrew Howroyd, Jun 02 2020
A361573
Expansion of e.g.f. exp(x^3/(6 * (1 - x)^3)).
Original entry on oeis.org
1, 0, 0, 1, 12, 120, 1210, 13020, 152880, 1975960, 28148400, 440470800, 7525441000, 139375236000, 2778421245600, 59239029249400, 1343609515248000, 32274288638592000, 818014942318974400, 21809788600885084800, 610079100418595808000, 17863467401461938256000
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x^3/(6(1-x)^3)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 20 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/(6*(1-x)^3))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=3, i, (-1)^(j-3)*j*binomial(-3, j-3)*v[i-j+1]/(i-j)!)); v;
A361577
Expansion of e.g.f. exp(x^4/(24 * (1 - x)^4)).
Original entry on oeis.org
1, 0, 0, 0, 1, 20, 300, 4200, 58835, 849240, 12814200, 203742000, 3430355775, 61363001700, 1168815948300, 23734579869000, 513878948207625, 11850279026586000, 290440507342986000, 7543064638441332000, 206860683821114948625, 5968372055889205462500
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^4/(24*(1-x)^4))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, (-1)^(j-4)*j*binomial(-4, j-4)*v[i-j+1]/(i-j)!)); v;
A366155
Expansion of e.g.f. exp(x^3/(3*(1-x)^3)).
Original entry on oeis.org
1, 0, 0, 2, 24, 240, 2440, 26880, 329280, 4518080, 69148800, 1168675200, 21564188800, 430048819200, 9195964377600, 209593877292800, 5068718054400000, 129599032442880000, 3492894468128665600, 98968805893769011200, 2940975338620999680000, 91452266705317726208000, 2969664371124258103296000
Offset: 0
a(7)=26880 since, using one table, there are 6! circular seatings and binomial(7,3) ways to select 3 persons, hence 25200 ways. Using two tables, the only way we can select 3 persons from each one is seating 4 persons in one table and 3 in the other, which can be done in 420 ways; then choosing 3 persons from each table can be done in 4 ways, for a total of 1680 ways; hence 25200 + 1680 = 26880.
-
CoefficientList[Series[Exp[x^3/(3*(1-x)^3)],{x,0,22}],x]Table[n!,{n,0,22}] (* Stefano Spezia, Oct 02 2023 *)
nmax = 25; Join[{1}, Table[n!*Sum[Binomial[n-1, 3*k-1]/(3^k*k!), {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 28 2025 *)
Showing 1-7 of 7 results.
Comments