A346646
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k) / (3*k + 1).
Original entry on oeis.org
1, 2, 7, 38, 257, 1935, 15505, 129519, 1115061, 9823160, 88121887, 802227794, 7392428009, 68819554003, 646276497617, 6114880542117, 58237420303109, 557850829527246, 5370956411708779, 51947475492561014, 504492516832543885, 4917564488572565160
Offset: 0
-
A346646 := proc(n)
hypergeom([-n,1/4,1/2,3/4],[2/3,1,4/3],-256/27) ;
simplify(%) ;
end proc:
seq(A346646(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
-
Table[Sum[Binomial[n, k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 21; CoefficientList[Series[Sum[(Binomial[4 k, k]/(3 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {2/3, 1, 4/3}, -256/27], {n, 0, 21}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(4*k,k)/(3*k + 1)); \\ Michel Marcus, Jul 26 2021
A346647
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*k,k) / (4*k + 1).
Original entry on oeis.org
1, 2, 8, 54, 460, 4361, 43988, 462580, 5014252, 55624944, 628432101, 7205500484, 83632219892, 980710882430, 11601345881748, 138278231052451, 1659037424218780, 20020306637339944, 242835190201382648, 2958961154058610552, 36203518795424475661
Offset: 0
-
A346647 := proc(n)
hypergeom([-n,1/5,2/5,3/5,4/5],[1/2,3/4,1,5/4],-3125/256) ;
simplify(%) ;
end proc:
seq(A346647(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
-
Table[Sum[Binomial[n, k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^3 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[5 k, k]/(4 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5, -n}, {1/2, 3/4, 1, 5/4}, -3125/256], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(5*k,k)/(4*k + 1)); \\ Michel Marcus, Jul 26 2021
A346648
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 2, 9, 73, 751, 8587, 104425, 1323952, 17303503, 231455104, 3153167249, 43597546197, 610232050453, 8629733401556, 123114479858631, 1769728635257503, 25607523627970183, 372688563309335806, 5451995469296025115, 80122698147986922194, 1182341393088427774071
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[6 k, k]/(5 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6, -n}, {2/5, 3/5, 4/5, 1, 6/5}, -46656/3125], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(6*k,k)/(5*k + 1)); \\ Michel Marcus, Jul 26 2021
A346650
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(8*k,k) / (7*k + 1).
Original entry on oeis.org
1, 2, 11, 120, 1661, 25484, 415619, 7066670, 123865313, 2222178999, 40604688117, 753051711707, 14138552326609, 268204210248763, 5132686807360949, 98973130183436759, 1921142366704203305, 37508070639707177792, 736080632477073862271, 14511777729474947626918
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^6 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 19; CoefficientList[Series[Sum[(Binomial[8 k, k]/(7 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, -n}, {2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7}, -16777216/823543], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(8*k,k)/(7*k + 1)); \\ Michel Marcus, Jul 26 2021
A349292
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^6)).
Original entry on oeis.org
1, 2, 15, 190, 2871, 47643, 838888, 15389452, 290951545, 5629024955, 110908062511, 2217739684483, 44891645810124, 918086053852234, 18941156419798530, 393742848618632760, 8239112912485293357, 173406208518520952066, 3668419587671991125142
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]
A349313
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^7) / (1 - x).
Original entry on oeis.org
1, 2, 16, 212, 3320, 57024, 1038928, 19718512, 385668448, 7718866880, 157326086656, 3254310606208, 68142850580480, 1441588339943168, 30765576147680000, 661561298256228096, 14319744815795062272, 311756656998135770112, 6822215641015820419072
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^7)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 6 k, 7 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]
A346667
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 0, 6, 51, 578, 7011, 89931, 1198798, 16445122, 230643888, 3292247673, 47672499727, 698569117499, 10339672571689, 154357100458366, 2321475460350492, 35140713973159266, 534971413383669580, 8185501429052369700, 125811555778930237392, 1941590759206061655069
Offset: 0
-
Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[(-1)^n HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -n}, {1/3, 1/2, 2/3, 5/6, 1, 7/6}, 823543/46656], {n, 0, 20}]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(7*k,k)/(6*k + 1)); \\ Michel Marcus, Jul 28 2021
A349334
G.f. A(x) satisfies A(x) = 1 + x * A(x)^7 / (1 - x).
Original entry on oeis.org
1, 1, 8, 85, 1051, 14197, 203064, 3022909, 46347534, 726894786, 11606936525, 188060979332, 3084087347910, 51094209834068, 853859480938095, 14376597494941454, 243649099741045190, 4153091242153905838, 71152973167920086796, 1224593757045581062444
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^7, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A346671
a(n) = Sum_{k=0..n} binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 2, 9, 79, 898, 11370, 153148, 2150836, 31140511, 461462144, 6964815000, 106691488130, 1654539334220, 25923944408960, 409770113121064, 6526344613981944, 104632592920840659, 1687270854882480906, 27348675382672733281, 445328790513987869681, 7281393330439106226281
Offset: 0
-
Table[Sum[Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(7*k, k)/(6*k+1)); \\ Michel Marcus, Jul 28 2021
A378327
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).
Original entry on oeis.org
1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]
Showing 1-10 of 11 results.
Comments