cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A131179 a(n) = if n mod 2 == 0 then n*(n+1)/2, otherwise (n-1)*n/2 + 1.

Original entry on oeis.org

0, 1, 3, 4, 10, 11, 21, 22, 36, 37, 55, 56, 78, 79, 105, 106, 136, 137, 171, 172, 210, 211, 253, 254, 300, 301, 351, 352, 406, 407, 465, 466, 528, 529, 595, 596, 666, 667, 741, 742, 820, 821, 903, 904, 990, 991, 1081, 1082, 1176, 1177, 1275, 1276, 1378, 1379, 1485
Offset: 0

Views

Author

Philippe LALLOUET, Sep 16 2007

Keywords

Comments

From Wesley Ivan Hurt, Jun 24 2024: (Start)
Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. For n > 0, a(n) is row 1 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=1, n>0. (End)

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
- _Wesley Ivan Hurt_, Jun 24 2024
		

Crossrefs

Cf. A128918.
For rows k = 1..10: this sequence (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).

Programs

  • Haskell
    a131179 n = (n + 1 - m) * n' + m  where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Oct 12 2013
    
  • Magma
    [(n^2+1+(n-1)*(-1)^n )/2: n in [0..60]]; // Vincenzo Librandi, Feb 12 2016
    
  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 10}, 60] (* Jean-François Alcover, Feb 12 2016 *)
    Table[If[EvenQ[n],(n(n+1))/2,(n(n-1))/2+1],{n,0,60}] (* Harvey P. Dale, Jul 25 2024 *)
  • Python
    def A131179(n): return n*(n+1)//2 + (1-n)*(n % 2) # Chai Wah Wu, May 24 2022

Formula

G.f.: -x*(1+2*x-x^2+2*x^3)/((1+x)^2*(x-1)^3). - R. J. Mathar, Sep 05 2012
a(n) = ( n^2+1+(n-1)*(-1)^n )/2. - Luce ETIENNE, Aug 19 2014

A373662 a(n) = (1 + (n+1)^2 - (n-2)*(-1)^n)/2.

Original entry on oeis.org

2, 5, 9, 12, 20, 23, 35, 38, 54, 57, 77, 80, 104, 107, 135, 138, 170, 173, 209, 212, 252, 255, 299, 302, 350, 353, 405, 408, 464, 467, 527, 530, 594, 597, 665, 668, 740, 743, 819, 822, 902, 905, 989, 992, 1080, 1083, 1175, 1178, 1274, 1277, 1377, 1380, 1484, 1487, 1595
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 2 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=2.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, this sequence (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row n=2 of A056011.
Column k=2 of A056023.

Programs

  • Magma
    [(1 + (n+1)^2 - (n-2)*(-1)^n)/2: n in [1..80]];
    
  • Mathematica
    k := 2; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]
  • Python
    def A373662(n): return ((n+1)*(n+2)-1 if n&1 else n*(n+1)+5)>>1 # Chai Wah Wu, Jun 23 2024

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A131179(n+1) + (-1)^n.
G.f.: -x*(2*x^4-3*x^3+3*x+2)/((x+1)^2*(x-1)^3). - Alois P. Heinz, Jun 12 2024

A373663 a(n) = (1 + (n+2)^2 + (n-3)*(-1)^n)/2.

Original entry on oeis.org

6, 8, 13, 19, 24, 34, 39, 53, 58, 76, 81, 103, 108, 134, 139, 169, 174, 208, 213, 251, 256, 298, 303, 349, 354, 404, 409, 463, 468, 526, 531, 593, 598, 664, 669, 739, 744, 818, 823, 901, 906, 988, 993, 1079, 1084, 1174, 1179, 1273, 1278, 1376, 1381, 1483, 1488, 1594
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 3 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=3.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), this sequence (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 3 of the example in A056011, Column 3 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+2)^2 + (n-3)*(-1)^n)/2: n in [1..80]];
    
  • Mathematica
    k := 3; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]
  • Python
    def A373663(n): return ((n+1)*(n+2)+6 if n&1 else (n+2)*(n+3)-4)>>1 # Chai Wah Wu, Jun 23 2024

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A373662(n+1) - (-1)^n.
G.f.: -x*(x^4+2*x^3-7*x^2+2*x+6)/((x+1)^2*(x-1)^3).

A374004 a(n) = (1 + (n+3)^2 - (n-4)*(-1)^n)/2.

Original entry on oeis.org

7, 14, 18, 25, 33, 40, 52, 59, 75, 82, 102, 109, 133, 140, 168, 175, 207, 214, 250, 257, 297, 304, 348, 355, 403, 410, 462, 469, 525, 532, 592, 599, 663, 670, 738, 745, 817, 824, 900, 907, 987, 994, 1078, 1085, 1173, 1180, 1272, 1279, 1375, 1382, 1482, 1489, 1593
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 4 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=4.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), this sequence (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 4 of the table in A056011.
Column 4 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+3)^2 - (n-4)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(7*x^4 - 7*x^3 - 10*x^2 + 7 x + 7)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 4; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(7*x^4-7*x^3-10*x^2+7x+7)/((x+1)^2*(x-1)^3).
a(n) = A373663(n+1) + (-1)^n.

A374005 a(n) = (1 + (n+4)^2 + (n-5)*(-1)^n)/2.

Original entry on oeis.org

15, 17, 26, 32, 41, 51, 60, 74, 83, 101, 110, 132, 141, 167, 176, 206, 215, 249, 258, 296, 305, 347, 356, 402, 411, 461, 470, 524, 533, 591, 600, 662, 671, 737, 746, 816, 825, 899, 908, 986, 995, 1077, 1086, 1172, 1181, 1271, 1280, 1374, 1383, 1481, 1490, 1592, 1601
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 5 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=5.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), this sequence (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 5 of the table in A056011.
Column 5 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+4)^2 + (n-5)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(6*x^4 + 2*x^3 - 21*x^2 + 2*x + 15)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 5; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(6*x^4+2*x^3-21*x^2+2*x+15)/((x+1)^2*(x-1)^3).
a(n) = A374004(n+1) - (-1)^n.

A374007 a(n) = (1 + (n+5)^2 - (n-6)*(-1)^n)/2.

Original entry on oeis.org

16, 27, 31, 42, 50, 61, 73, 84, 100, 111, 131, 142, 166, 177, 205, 216, 248, 259, 295, 306, 346, 357, 401, 412, 460, 471, 523, 534, 590, 601, 661, 672, 736, 747, 815, 826, 898, 909, 985, 996, 1076, 1087, 1171, 1182, 1270, 1281, 1373, 1384, 1480, 1491, 1591, 1602
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 6 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=6.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), this sequence (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 6 of the table in A056011.
Column 6 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+5)^2 - (n-6)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(16*x^4 - 11*x^3 - 28*x^2 + 11*x + 16)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 6; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(16*x^4-11*x^3-28*x^2+11*x+16)/((x+1)^2*(x-1)^3).
a(n) = A374005(n+1) + (-1)^n.

A374008 a(n) = (1 + (n+6)^2 + (n-7)*(-1)^n)/2.

Original entry on oeis.org

28, 30, 43, 49, 62, 72, 85, 99, 112, 130, 143, 165, 178, 204, 217, 247, 260, 294, 307, 345, 358, 400, 413, 459, 472, 522, 535, 589, 602, 660, 673, 735, 748, 814, 827, 897, 910, 984, 997, 1075, 1088, 1170, 1183, 1269, 1282, 1372, 1385, 1479, 1492, 1590, 1603, 1705
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 7 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=7.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), this sequence (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 7 of the table in A056011.
Column 7 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+6)^2 + (n-7)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(15*x^4 + 2*x^3 - 43*x^2 + 2 x + 28)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 7; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(15*x^4+2*x^3-43*x^2+2x+28)/((x+1)^2*(x-1)^3).
a(n) = A374007(n+1) - (-1)^n.

A374009 a(n) = (1 + (n+7)^2 - (n-8)*(-1)^n)/2.

Original entry on oeis.org

29, 44, 48, 63, 71, 86, 98, 113, 129, 144, 164, 179, 203, 218, 246, 261, 293, 308, 344, 359, 399, 414, 458, 473, 521, 536, 588, 603, 659, 674, 734, 749, 813, 828, 896, 911, 983, 998, 1074, 1089, 1169, 1184, 1268, 1283, 1371, 1386, 1478, 1493, 1589, 1604, 1704, 1719
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 8 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=8.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), this sequence (k=8), A374010 (k=9), A374011 (k=10).
Row 8 of the table in A056011.
Column 8 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+7)^2 - (n-8)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(29*x^4 - 15*x^3 - 54*x^2 + 15*x + 29)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 8; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(29*x^4-15*x^3-54*x^2+15*x+29)/((x+1)^2*(x-1)^3).
a(n) = A374008(n+1) + (-1)^n.

A374011 a(n) = (1 + (n+9)^2 - (n-10)*(-1)^n)/2.

Original entry on oeis.org

46, 65, 69, 88, 96, 115, 127, 146, 162, 181, 201, 220, 244, 263, 291, 310, 342, 361, 397, 416, 456, 475, 519, 538, 586, 605, 657, 676, 732, 751, 811, 830, 894, 913, 981, 1000, 1072, 1091, 1167, 1186, 1266, 1285, 1369, 1388, 1476, 1495, 1587, 1606, 1702, 1721, 1821
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 24 2024

Keywords

Comments

Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 10 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=10.

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
		

Crossrefs

For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), this sequence (k=10).
Row 10 of the table in A056011.
Column 10 of the rectangular array in A056023.

Programs

  • Magma
    [(1 + (n+9)^2 - (n-10)*(-1)^n)/2: n in [1..80]];
  • Mathematica
    CoefficientList[Series[-(46*x^4 - 19*x^3 - 88*x^2 + 19*x + 46)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
    k := 10; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(46*x^4-19*x^3-88*x^2+19*x+46)/((x+1)^2*(x-1)^3).
a(n) = A374010(n+1) + (-1)^n.
Showing 1-9 of 9 results.