cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 197 results. Next

A105503 Numbers n such that 3 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

4, 9, 14, 28, 33, 38, 52, 57, 71, 76, 81, 95, 100, 105, 119, 124, 138, 143, 148, 162, 167, 172, 181, 186, 191, 205, 210, 215, 229, 234, 239, 248, 253, 258, 272, 277, 282, 296, 301, 306, 315, 320, 325, 339, 344, 349, 363, 368, 382, 387, 392, 406, 411, 416, 430
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 3; A105513(a(n)) = A105513(a(n) - 1) + 1.

Examples

			a(10)=76: A008963(76) = A000030(A000045(76)) =
A000030(3416454622906707) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[{n,Fibonacci[n]},{n,450}],First[IntegerDigits[#[[2]]]]==3&][[All,1]] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    is(n)=digits(fibonacci(n))[1]==3 \\ Charles R Greathouse IV, Oct 07 2016

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(4) - log(3)) = 8.00392.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Definition clarified by Harvey P. Dale, Apr 13 2019

A105504 Numbers m such that 4 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

19, 24, 43, 48, 62, 67, 72, 86, 91, 110, 115, 129, 134, 153, 158, 177, 182, 196, 201, 220, 225, 244, 249, 263, 268, 287, 292, 311, 316, 330, 335, 354, 359, 373, 378, 383, 397, 402, 421, 426, 440, 445, 450, 464, 469, 488, 493, 507, 512, 517, 531, 536, 555, 560
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 4; A105514(a(n)) = A105514(a(n) - 1) + 1.

Examples

			a(10)=110: A008963(110) = A000030(A000045(110)) =
A000030(43566776258854844738105) = 4.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(5) - log(4)) = 10.318851.... - Charles R Greathouse IV, Oct 07 2016

A105506 Numbers m such that 6 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

15, 20, 39, 63, 82, 87, 106, 130, 149, 154, 173, 197, 216, 221, 240, 259, 264, 283, 288, 307, 326, 331, 350, 355, 374, 393, 398, 417, 422, 441, 460, 465, 484, 508, 527, 532, 551, 575, 594, 599, 618, 642, 661, 666, 685, 709, 728, 733, 752, 771, 776, 795, 800
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 6; A105516(a(n)) = A105516(a(n) - 1) + 1.

Examples

			a(10)=154: A008963(154) = A000030(A000045(154)) =
A000030(68330027629092351019822533679447) = 6.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(7) - log(6)) = 14.9372.... - Charles R Greathouse IV, Oct 07 2016

A105507 Numbers m such that 7 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

25, 44, 49, 68, 92, 111, 116, 135, 159, 178, 183, 202, 226, 245, 250, 269, 293, 312, 317, 336, 360, 379, 384, 403, 427, 446, 470, 489, 494, 513, 537, 556, 561, 580, 604, 623, 628, 647, 671, 690, 695, 714, 738, 757, 762, 781, 805, 824, 829, 848, 872, 891, 915
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 7; A105517(a(n)) = A105517(a(n) - 1) + 1.

Examples

			a(10)=178: A008963(178) = A000030(A000045(178)) =
A000030(7084593923980518516849609894969925639) = 7.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(8) - log(7)) = 17.24377.... - Charles R Greathouse IV, Oct 07 2016

A105508 Numbers m such that 8 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

6, 11, 30, 54, 73, 78, 97, 121, 140, 145, 164, 188, 207, 231, 255, 274, 298, 322, 341, 365, 389, 408, 432, 451, 456, 475, 499, 518, 523, 542, 566, 585, 590, 609, 633, 652, 676, 700, 719, 743, 767, 786, 810, 834, 853, 877, 896, 901, 920, 944, 963, 968, 987
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Examples

			a(1)=6 since the 6th Fibonacci: 8 begins with 8.
a(2)=11 since the 11th Fibonacci: 89 begins with 8.
		

Crossrefs

Programs

Formula

A008963(a(n)) = A000030(A000045(a(n))) = 8.
A105518(a(n)) = A105518(a(n) - 1) + 1.
A000045(a(n)) = A045732(n).
a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(9) - log(8)) = 19.549378.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Example and formulas edited by Michel Marcus, Jan 10 2014

A105509 Numbers m such that 9 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

16, 35, 59, 83, 102, 126, 150, 169, 193, 212, 236, 260, 279, 303, 327, 346, 370, 394, 413, 437, 461, 480, 504, 528, 547, 571, 595, 614, 638, 657, 681, 705, 724, 748, 772, 791, 815, 839, 858, 882, 906, 925, 949, 973, 992, 1016, 1040, 1059, 1083, 1102, 1107
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 9; A105519(a(n)) = A105519(a(n) - 1) + 1.
Comment from Jonathan Vos Post, Dec 23 2006: Peterson says: "Calculate 100/89 = 1.1235955056... This fraction generates the first five Fibonacci numbers before blurring into other digits. ... 10000/9899 = 1.0102030508132134559046368... generates the first 10 Fibonacci numbers (using two digits per number). 1000000/998999 generates the first 15 Fibonacci numbers (using three digits per number). ... in successive fractions, two 0's are appended to the numerator and a 9 to the beginning and end of the denominator...."

Examples

			a(10)=21: A008963(212) = A000030(A000045(212)) =
A000030(90343046356137747723758225621187571439538669) = 9.
		

Crossrefs

Programs

Formula

m such that d(m+5)-d(m) = 2 for d(m) = floor(1 + log_10(F(m))) and F(m) = m-th Fibonacci number = A000045(m). - Jonathan Vos Post, Dec 23 2006
a(n) ~ k*n by the equidistribution theorem, where k = 1/(1 - log(9)/log(10)) = 21.8543.... - Charles R Greathouse IV, Oct 07 2016

A162501 Lexicographically earliest permutation of the natural numbers such that in decimal representation the initial digit for each term is equal to the last nonzero digit of its predecessor; a(1)=1.

Original entry on oeis.org

1, 10, 11, 12, 2, 20, 21, 13, 3, 30, 31, 14, 4, 40, 41, 15, 5, 50, 51, 16, 6, 60, 61, 17, 7, 70, 71, 18, 8, 80, 81, 19, 9, 90, 91, 100, 101, 102, 22, 23, 32, 24, 42, 25, 52, 26, 62, 27, 72, 28, 82, 29, 92, 200, 201, 103, 33, 34, 43, 35, 53, 36, 63, 37, 73, 38, 83, 39, 93, 300, 301
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2009

Keywords

Comments

A000030(a(n+1)) = A065881(a(n));
inverse of A162502: a(A162502(n)) = A162502(a(n)) = n;
a(a(n)) = A162503(n).

Crossrefs

A262356 a(1) = 1; for n > 1, let s denote the digit-string of a(n-1) with the first digit omitted. Then a(n) is the smallest number not yet present which starts with s, omitting leading zeros.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 13, 30, 14, 40, 15, 50, 16, 60, 17, 70, 18, 80, 19, 90, 21, 100, 22, 23, 31, 101, 102, 24, 41, 103, 32, 25, 51, 104, 42, 26, 61, 105, 52, 27, 71, 106, 62, 28, 81, 107, 72, 29, 91, 108, 82, 200, 33, 34, 43, 35, 53
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2015

Keywords

Comments

A simplified variation of A262282.
A permutation of the positive integers with inverse A262358;
A262363 and A262371 give the primes and where they occur: A262363(n)=a(A262371(n)).
a(A262393(n)) = A262390(n).
It seems clear that every number will appear, but it would be nice to have a formal proof. - N. J. A. Sloane, Sep 20 2015

Crossrefs

Cf. A262283, A262282, A262358 (inverse), A262360 (fixed points), A262374 (binary counterpart), A262363 (primes), A262371, A000030, A262390 (starting with 1), A262393.

Programs

  • Haskell
    import Data.List (isPrefixOf, delete, genericIndex)
    import Data.Set (singleton, notMember, insert)
    a262356 n = a262356_list !! (n-1)
    a262356_list = 1 : f "" (singleton "1") where
       f xs s = (read ys :: Int) : f (dropWhile (== '0') ys') (insert ys s)
         where ys@(_:ys') = head
                 [vs | vs <- zss, isPrefixOf xs vs, notMember vs s]
       zss = map show [2..]
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Module[{s, k}, s = Rest[IntegerDigits[a[n - 1]]] //. {(0).., d__} :> {d}; For[k = 2, True, k++, If[FreeQ[Array[a, n - 1], k], If[s == {0}, Return[k], If[IntegerDigits[k][[1 ;; Length[s]]] == s, Return[k]]]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 12 2019 *)

A376270 a(n) is the product of the leading digit of n and the sum of the squares of its digits.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 8, 10, 16, 26, 40, 58, 80, 106, 136, 170, 27, 30, 39, 54, 75, 102, 135, 174, 219, 270, 64, 68, 80, 100, 128, 164, 208, 260, 320, 388, 125, 130, 145, 170, 205, 250, 305, 370, 445, 530, 216, 222, 240, 270, 312, 366
Offset: 0

Views

Author

Michel Marcus, Sep 18 2024

Keywords

Crossrefs

b-elated function: A000120 (2), A376270 (10).

Programs

  • Maple
    a:= n-> (l-> l[-1]*add(i^2, i=l))(convert(n, base, 10)):
    seq(a(n), n=0..65);  # Alois P. Heinz, Sep 18 2024
  • Mathematica
    a[n_]:=First[d=IntegerDigits[n]]Norm[d]^2; Array[a,66,0] (* Stefano Spezia, Sep 18 2024 *)
  • PARI
    a(n) = if (n, my(d=digits(n)); d[1]*norml2(d), 0);
    
  • Python
    def a(n): return (d:=list(map(int, str(n))))[0] * sum(di*di for di in d)
    print([a(n) for n in range(66)]) # Michael S. Branicky, Sep 18 2024

Formula

a(n) = A000030(n)*A003132(n).

A040163 a(n) is the absolute value of (the first digit of n minus the last digit of n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Keywords

Examples

			a(371) = abs(3 - 1) = 2.
a(567) = abs(5 - 7) = 2.
		

Crossrefs

Cf. A000030 (first digit of n), A010879 (last digit of n).

Programs

  • Mathematica
    Array[Abs[First@ # - Last@ #] &@ IntegerDigits@ # &, 106] (* Michael De Vlieger, Oct 15 2018 *)
  • PARI
    a(n) = my(digs = digits(n)); abs(digs[1] - digs[#digs]); \\ Michel Marcus, Sep 27 2013
    
  • PARI
    apply( {A040163(n)=abs(n\10^logint(n+!n,10)-n%10)}, [0..111]) \\ M. F. Hasler, Apr 22 2024
    
  • Python
    for n in range(1,51): print(abs(int(str(n)[0])-int(str(n)[-1]))) # David F. Marrs, Oct 14 2018

Formula

a(n) = abs(floor(n / 10 ^ floor(log_10(n))) - (n - floor(n / 10) * 10)) - David F. Marrs, Oct 14 2018
Previous Showing 41-50 of 197 results. Next